638 Stochastic Programming
= 21. 3333 + 29. 3333 = 50. 6666σX^2 =E[X^2 ]−(E[X])^2 = 05. 6666 −( 6. 6667 )^2= 6. 2 222 or σX= 2. 494411.2.4 Function of a Random Variable
IfXis a random variable, any other variableYdefined as a function ofXwill also be
a random variable. IffX(x) andFX(x) denote, respectively, the probability density and
distribution functions ofX, the problem is to find the density functionfY(y) and the
distribution functionFY(y) of the random variableY. Let the functional relation beY=g(X) (11.15)By definition, the distribution function ofYis the probability of realizingYless than
or equal toy:
FY(y) =P(Y≤y)=P (g≤y)=∫
g(x)≤yfX(x) dx (11.16)where the integration is to be done over all values ofxfor whichg(x)≤y.
For example, if the functional relation betweenyandxis as shown in Fig. 11.3,
the range of integration is shown asx 1 + x 2 + x 3 + · · · .The probability density
function ofYis given byfY(y)=∂
∂y[FY(y)] (11.17)IfY=g(X), the mean and variance ofYare defined, respectively, byE(Y )=∫∞
−∞g(x)fX(x) dx (11.18)Var[Y]=∫∞
−∞[ (x)g −E(Y )]^2 fX(x) dx (11.19)Figure 11.3 Range of integration in Eq. (11.16).