640 Stochastic Programming
exclusive ways of obtaining the points lying betweenxandx+dx. Let the lower and
upper limits of y bea 1 (x) andb 1 (x) Then.P[x≤x′≤ x+dx]=[∫b 1 (x)a 1 (x)fX,Y(x, y) dy]
dx=fX(x) dxfX(x)=∫y 2 =b 1 (x)y 1 =a 1 (x)fX,Y(x, y) dy (11.25)Similarly, we can show thatfY(y)=∫x 2 =b 2 (y)x 1 =a 2 (y)fX,Y(x, y) dx (11.26)11.2.6 Covariance and Correlation
IfXandYare two jointly distributed random variables, the variances ofXandYare
defined asE[(X−X)^2 ] =Var[X]=∫∞
−∞(x−X)^2 fX(x) dx (11.27)E[(Y−Y )^2 ] =Var[Y]=∫∞
−∞(y−Y )^2 fY(y) dy (11.28)and the covariance ofXandYasE[(X−X)(Y−Y )]=Cov(X, Y )=
∫∞
−∞∫∞
−∞(x−X)(y−Y )fX,Y(x, y)dxdy=σX,Y (11.29)The correlation coefficient,ρX,Y, for the random variables is defined asρX,Y=Cov(X, Y )
σXσY(11.30)
and it can be proved that− 1 ≤ρX,Y≤. 111.2.7 Functions of Several Random Variables
IfYis a function of several random variablesX 1 , X 2 ,... , Xn, the distribution and den-
sity functions ofYcan be found in terms of the joint density function ofX 1 , X 2 ,... , Xn
as follows:
LetY=g(X 1 , X 2 ,... , Xn) (11.31)