642 Stochastic Programming
These results can be generalized to the case whenYis a linear function of several
random variables. Thus if
Y=
∑n
i= 1
aiXi (11.38)
then
E(Y )=
∑n
i= 1
aiE(Xi) (11.39)
Var(Y )=
∑n
i= 1
ai^2 Var (Xi)+
∑n
i= 1
∑n
j= 1
aiajCov (Xi, Xj), i=j (11.40)
Approximate Mean and Variance of a Function of Several Random Variables.
IfY=g(X 1 ,... , Xn) the approximate mean and variance of, Ycan be obtained as
follows. Expand the functiongin a Taylor series about the mean valuesX 1 ,X 2 ,... ,Xn
to obtain
Y=g(X 1 ,X 2 ,... ,Xn)+
∑n
i= 1
(Xi−Xi)
∂g
∂Xi
+
1
2
∑n
i= 1
∑n
j= 1
(Xi−Xi) (Xj−Xj)
∂^2 g
∂Xi∂Xj
+ · · · (11.41)
where the derivatives are evaluated at(X 1 ,X 2 ,... ,Xn) By truncating the series at.
the linear terms, we obtain the first-order approximation toYas
Y≃g(X 1 ,X 2 ,... ,Xn)+
∑n
i= 1
(Xi−Xi)
∂g
∂Xi
∣
∣
∣
∣
(X 1 ,X 2 ,...,Xn)
(11.42)
The mean and variance ofYgiven by Eq. (11.42) can now be expressed as [using
Eqs. (11.39) and (11.40)]
E(Y )≃g(X 1 ,X 2 ,... ,Xn) (11.43)
Var(Y )≃
∑n
i= 1
c^2 iVar (Xi)+
∑n
i= 1
∑n
j= 1
cicjCov (Xi, Xj), i=j (11.44)
whereciandcjare the values of the partial derivatives∂g/∂Xiand ∂g/∂Xj, respec-
tively, evaluated at(X 1 ,X 2 ,... ,Xn).
It is worth noting at this stage that the approximation given by Eq. (11.42)
is frequently used in most of the practical problems to simplify the computations
involved.