646 Stochastic Programming
=[1−P (Z≤ 1. 667 )]+[1−P (Z≤ 1. 667 )]
= 2. 0 − 2 P (Z≤ 1. 667 )
= 2. 0 − 2 ( 0. 9525 )= 0. 095
= 9 .5 %
Joint Normal Density Function. IfX 1 , X 2 ,... , Xnfollow normal distribution, any
linear function,Y=a 1 X 1 +a 2 X 2 + · · · +anXn, also follows normal distribution with
mean
Y=a 1 X 1 +a 2 X 2 + · · · +anXn (11.55)
and variance
Var(Y )=a 12 Var (X 1 )+a^22 Var (X 2 ) +· · · +an^2 Var (Xn) (11.56)
ifX 1 , X 2 ,... , Xnare independent. In general, the joint normal density function for
n-independent random variables is given by
fX 1 ,X 2 ,...,Xn(x 1 , x 2 ,... , xn)=
1
√
( 2 π )nσ 1 σ 2 · · ·σn
exp
−
1
2
∑n
k= 1
(
xk−Xk
σk
) 2
=fX 1 (x 1 )fX 2 (x 2 ) · ·· fXn(xn) (11.57)
whereσi=σXi. If the correlation between the random variablesXkandXjis not zero,
the joint density function is given by
fX 1 ,X 2 ,...,Xn(x 1 , x 2 ,... , xn)
=
1
√
( 2 π )n|K|
exp
−^1
2
∑n
j= 1
∑n
k= 1
{K−^1 }j k(xj−Xj)(xk−Xk)
(11.58)
where
KXjXk=Kj k= E[(xj−Xj)(xk−Xk)]
=
∫∞
−∞
∫∞
−∞
(xj−Xj)(xk−Xk)fXj,Xk(xj, xk)dxjdxk
= onvariance betweenc XjandXk
K =correlation matrix=
K 11 K 12 · · · K 1 n
K 21 K 22 · · · K 2 n
..
.
Kn 1 Kn 2 · · · Knn
(11.59)
and{K−^1 }j k= jkth element ofK−^1. It is to be noted thatKXjXk= 0 forj=kand =
σX^2 jforj=kin case there is no correlation betweenXjandXk.