11.3 Stochastic Linear Programming 649
wherehiis a new random variable defined as
hi=
∑n
j= 1
aijxj−bi=
∑n+^1
k= 1
qikyk (11.72)
where
qik=aik, k= 1 , 2 ,... , n qi,n+ 1 =bi
yk=xk, k= 1 , 2 ,... , n, yn+ 1 = − 1
Noticethat the constantyn+ 1 is introduced for convenience. Sincehi is given by a
linear combination of the normally distributed random variablesqik, it will also follow
normal distribution. The mean and the variance ofhiare given by
hi=
n∑+ 1
k= 1
qikyk=
∑n
j= 1
aijxj−bi (11.73)
Var(hi)=YTViY (11.74)
where
Y=
y 1
y 2
..
.
yn+ 1
(11.75)
Vi=
Var(qi 1 ) Cov(qi 1 , qi 2 ) ·· · Cov(qi 1 , qi,n+ 1 )
Cov(qi 2 , qi 1 ) Var(qi 2 ) ·· · Cov(qi 2 , qi,n+ 1 )
..
.
Cov(qi,n+ 1 , qi 1 ) ovC (qi,n+ 1 , qi 2 ) ·· · Var(qi,n+ 1 )
(11.76)
This can be written more explicitly as
Var(hi)=
n∑+ 1
k= 1
[
yk^2 Var (qik)+ 2
∑n+^1
l=k+ 1
ykylCov (qik, qil)
]
=
∑n
k= 1
[
yk^2 Var (qik)+ 2
∑n
l=k+ 1
ykylCov (qik, qil)
]
+yn^2 + 1 Var (qi,n+ 1 )+ 2 y^2 n+ 1 Cov (qi,n+ 1 , qi,n+ 1 )
+
∑n
k= 1
[2ykyn+ 1 Cov (qik, qi,n+ 1 )]