Engineering Optimization: Theory and Practice, Fourth Edition

(Martin Jones) #1

656 Stochastic Programming


the objective function can be expressed asf (Y)= 5 W+ 2 d= 5 ρlπdt+ 2 d. Since

Y=




















P

E

ρ
fy
l
d




















=


















2500

0. 85 × 106

0 025. 0

500

250

d


















f (Y)= 5 ρlπdt+ 2 d= 9. 8175 dt+ 2 d
∂f
∂y 1




∣Y=

∂f
∂y 2




∣Y=

∂f
∂y 4




∣Y=^0

∂f
∂y 3




∣Y=^5 πldt=^3927.^0 dt

∂f
∂y 5




∣Y=^5 πρdt=^0.^03927 dt

∂f
∂y 6




∣Y=^5 πρlt+^2 =^9.^8175 t+^2.^0

Equations (11.87) and (11.88) give
ψ(Y)= 9. 8175 dt+ 2 d (E 1 )

σψ^2    927 =( 3. 0 dt)^2 σρ^2 + ( 0. 03927 dt)^2 σl^2 + ( 9. 8175 t+ 2. 0 )^2 σd^2

= 0. 9835 d

2
t^2 + 0. 0004 d

2
+ 0. 003927 d

2
t (E 2 )

Thusthe new objective function for minimization can be expressed as
F (d, t)=k 1 ψ+k 2 σψ

=k 1 ( 1759. 8 dt+ 2 d)+k 2 ( 8350. 9 d
2
t^2 + 0. 0004 d
2
+ 0. 003927 d
2
t)^1 /^2 (E 3 )

wherek 1 ≥ and 0 k 2 ≥ indicate the relative importances of 0 ψandσψfor minimiza-
tion. By using the expressions derived in Example 1.1, the constraints can be expressed
as
P[g 1 ( Y)≤ 0 ]=P

(

P

π dt

−fy≤ 0

)

≥ 0. 95 (E 4 )

P[g 2 ( Y)≤ 0 ]=P

[

P

π dt


π^2 E
8 l^2

(d^2 +t^2 )≤ 0

]

≥ 0. 95 (E 5 )

P[g 3 (Y)≤ 0 ]=P[−d+ 2. 0 ≤0]≥ 0. 95 (E 6 )
P[g 4 (Y)≤ 0 ]=P[d− 14. 0 ≤0]≥ 0. 95 (E 7 )
P[g 5 (Y)≤ 0 ]=P[−t+ 0. 2 ≤0]≥ 0. 95 (E 8 )

P[g 6 (Y)≤ 0 ]=P[t− 0. 8 ≤0]≥ 0. 95 (E 9 )
Free download pdf