Engineering Optimization: Theory and Practice, Fourth Edition

(Martin Jones) #1
11.4 Stochastic Nonlinear Programming 657

The mean values of the constraint functions are given by Eq. (11.92) as


g 1 =

P

πdt

−fy=

2500

πdt

− 500

g 2 =

P

πdt


π^2 E(d

2
+t^2 )
8 l

2 =

2500

πdt


π^2 ( 50. 8 × 106 )(d

2
+t^2 )
8 ( 250 )^2

g 3 = −d+ 2. 0

g 4 =d− 14. 0

g 5 = −t+ 0. 2
g 6 =t− 0. 8

The partial derivatives of the constraint functions can be computed as follows:


∂g 1
∂y 2




∣Y=

∂g 1
∂y 3




∣Y=

∂g 1
∂y 5




∣Y=^0

∂g 1
∂y 1




∣Y=

1

πdt
∂g 1
∂y 4




∣Y= −^1

∂g 1
∂y 6




∣Y= −

P

πd
2
t

=−

2500

πd
2
t
∂g 2
∂y 3




∣Y=

∂g 2
∂y 4




∣Y=^0

∂g 2
∂y 1




∣Y=

1

πdt

∂g 2
∂y 2




∣Y= −

π^2 (d

2
+t^2 )
8 l

2 = −

π^2 (d

2
+t^2 )
500 , 000

∂g 2
∂y 5




∣Y=

π^2 E(d
2
+t^2 )
4 l
3 =^0.^0136 π

(^2) (d^2 +t (^2) )
∂g 2
∂y 6





∣Y= −

P

πd
2
t


π^2 E( 2 d)
8 l

2 = −

2500

πd
2
t

−π^2 ( 3. 4 )d

∂g 3
∂yi




∣Y=0 fori=1 to 5

∂g 3
∂y 6




∣Y= −^1.^0

∂g 4
∂yi




∣Y=0 fori=1 to 5
Free download pdf