11.4 Stochastic Nonlinear Programming 657
The mean values of the constraint functions are given by Eq. (11.92) as
g 1 =
P
πdt
−fy=
2500
πdt
− 500
g 2 =
P
πdt
−
π^2 E(d
2
+t^2 )
8 l
2 =
2500
πdt
−
π^2 ( 50. 8 × 106 )(d
2
+t^2 )
8 ( 250 )^2
g 3 = −d+ 2. 0
g 4 =d− 14. 0
g 5 = −t+ 0. 2
g 6 =t− 0. 8
The partial derivatives of the constraint functions can be computed as follows:
∂g 1
∂y 2
∣
∣
∣
∣Y=
∂g 1
∂y 3
∣
∣
∣
∣Y=
∂g 1
∂y 5
∣
∣
∣
∣Y=^0
∂g 1
∂y 1
∣
∣
∣
∣Y=
1
πdt
∂g 1
∂y 4
∣
∣
∣
∣Y= −^1
∂g 1
∂y 6
∣
∣
∣
∣Y= −
P
πd
2
t
=−
2500
πd
2
t
∂g 2
∂y 3
∣
∣
∣
∣Y=
∂g 2
∂y 4
∣
∣
∣
∣Y=^0
∂g 2
∂y 1
∣
∣
∣
∣Y=
1
πdt
∂g 2
∂y 2
∣
∣
∣
∣Y= −
π^2 (d
2
+t^2 )
8 l
2 = −
π^2 (d
2
+t^2 )
500 , 000
∂g 2
∂y 5
∣
∣
∣
∣Y=
π^2 E(d
2
+t^2 )
4 l
3 =^0.^0136 π
(^2) (d^2 +t (^2) )
∂g 2
∂y 6
∣
∣
∣
∣Y= −
P
πd
2
t
−
π^2 E( 2 d)
8 l
2 = −
2500
πd
2
t
−π^2 ( 3. 4 )d
∂g 3
∂yi
∣
∣
∣
∣Y=0 fori=1 to 5
∂g 3
∂y 6
∣
∣
∣
∣Y= −^1.^0
∂g 4
∂yi
∣
∣
∣
∣Y=0 fori=1 to 5