658 Stochastic Programming
∂g 4
∂y 6
∣
∣
∣
∣Y=^1.^0
∂g 5
∂yi
∣
∣
∣
∣Y=
∂g 6
∂yi
∣
∣
∣
∣Y=0 fori=1 to 6
Since the value of the standard normal variateφj(pj) orresponding to the probabilityc
pj= 0. 9 5 is 1.645 (obtained from Table 11.1), the constraints in Eq. (11.98) can be
expressed as follows.
Forj= 1 †:
2500
πdt
− 500 − 1. 645
[
σP^2
π^2 d
2
t^2
+σf^2 y+
( 2500 )^2
π^2 d
4
t^2
σd^2
] 1 / 2
≤ 0
795
dt
− 500 − 1. 645
(
25 , 320
d
2
t^2
+ 5002 +
63. 3
d
2
t^2
) 1 / 2
≤ 0 (E 10 )
Forj=2:
2500
πdt
− 16. 78 (d
2
+t^2 ) − 1. 645
[
σP^2
π^2 d
2
t^2
+
π^4 (d
2
+t^2 )^2 σE^2
25 × 1010
+ ( 0. 0136 π^2 )^2 (d
2
+t^2 )^2 σl^2 +
(
2500
πd
2
t
+ 3. 4 π^2 d
) 2
σd^2
] 1 / 2
≤ 0
795
dt
− 16. 78 (d
2
+t^2 ) − 1. 645
[
25 , 320
d
2
t^2
+ 2. 82 (d
2
+t^2 )^2
+ 0. 113 (d
2
+t^2 )^2 +
63. 20
d
2
t^2
+ 0. 1126 d
4
+
5. 34 d
t
] 1 / 2
≤ 0 (E 11 )
Forj=3:
−d+ 2. 0 − 1 .645[( 10 −^4 )d
2
]^1 /^2 ≤ 0
− 1. 01645 d+ 2. 0 ≤ 0 (E 12 )
Forj=4:
d− 14. 0 − 1 .645[( 10 −^4 )d
2
]^1 /^2 ≤ 0
0. 98335 d− 14. 0 ≤ 0 (E 13 )
Forj=5:
−t+ 0. 2 ≤ 0 (E 14 )
Forj=6:
t− 0. 8 ≤ 0 (E 15 )
†The inequality sign is different from that of Eq. (11.98) due to the fact that the constraints are stated as
P[gj( Y)≤ 0 ]≥pj.