Engineering Optimization: Theory and Practice, Fourth Edition

(Martin Jones) #1

752 Practical Aspects of Optimization


14.7.1 Sensitivity Equations Using Kuhn–Tucker Conditions


The Kuhn–Tucker conditions satisfied at the constrained optimum designX∗are given
by [see Eqs. (2.73) and (2.74)]

∂f (X)
∂xi

+


j∈J 1

λj

∂gj(X)
∂xi

= 0 , i= 1 , 2 ,... , n (14.64)

gj(X)= 0 , j∈J 1 (14.65)
λj> 0 , j∈J 1 (14.66)

whereJ 1 is the set of active constraints and Eqs. (14.64) to (14.66) ar e valid with
X=X∗andλj=λ∗j. When a problem parameter changes by a small amount, we
assume that Eqs. (14.64) to (14.66) remain valid. Treatingf, gj, andX, λjas functions
of a typical problem parameterp, differentiation of Eqs. (14.64) and (14.65) with
respect topleads to

∑n

k= 1


∂

(^2) f (X)
∂xi∂xk


+


j∈J 1

λj

∂^2 gj(X)
∂xi∂xk


∂xk
∂p

+


j∈J 1

∂λj
∂p

∂gj(X)
∂xi

+

∂^2 f (X)
∂xi∂p

+


j∈J 1

λj

∂^2 gj(X)
∂xi∂p

= 0 , i= 1 , 2 ,... , n (14.67)

∂gj(X)
∂p

+

∑n

i= 1

∂gj(X)
∂xi

∂xi
∂p

= 0 , j∈J 1 (14.68)

Equations (14.67) and (14.68) can be expressed in matrix form as

[
[P]n×n [Q]n×q
[Q]Tq×n [0]q×q

]




∂X
∂pn× 1
∂λ
∂pq× 1




+

{

an× 1
bq× 1

}

=

{

(^0) n× 1
(^0) q× 1


}

(14.69)

whereqdenotes the number of active constraints and the elements of the matrices and
vectors in Eq. (14.69) are given by

Pik=

∂^2 f (X)
∂xi∂xk

+


j∈J 1

λj

∂^2 gj(X)
∂xi∂xk

(14.70)

Qij=

∂gj(X)
∂xi

, j∈J 1 (14.71)

ai=

∂^2 f (X)
∂xi∂p

+


j∈J 1

λj

∂gj(X)
∂xi∂p

(14.72)

bj=

∂gj(X)
∂p

, j∈J 1 (14.73)
Free download pdf