774 Practical Aspects of Optimization
14.10 The eigenvalue problem for the stepped bar shown in Fig. 14.11 can be expressed as
[K]Y=λ[M]Ywith the mass matrix, [M], given by
[M]=
[
( 2 ρ 1 A 1 l 1 + ρ 2 A 2 l 2 ) ρ 2 A 2 l 2
ρ 2 A 2 l 2 ρ 2 A 2 l 2
]
whereρi, Ai, andlidenote the mass density, area of cross section, and length of the seg-
menti, and the stiffness matrix, [K], is given by Eq. (2) of Problem 14.9. IfA 1 =2 in^2 ,
A 2 =1 in^2 ,E 1 =E 2 = 30 × 106 psi, 2l 1 =l 2 =50 in., andρ 1 g=ρ 2 g= 0 .283 lb/in^3 ,
determine
(a)Eigenvaluesλiand the eigenvectorsYi, i= 1 , 2
(b)Values of∂λi/∂A 1 , i= 1 ,2, using the method of Section 14.5
(c)Values of∂Yi/∂Y 1 , i= 1 ,2, using the method of Section 14.5
14.11 For the stepped bar considered in Problem 14.10, determine the following using the
method of Section 14.5.
(a)Values of∂λi/∂A 2 , i= 1 , 2
(b)Values of∂Yi/∂A 2 , i= 1 , 2
14.12 A cantilever beam with a hollow circular section with outside diameterdand wall
thicknesst(Fig. 14.12) is modeled with one beam finite element. The resulting static
equilibrium equations can be expressed as
2 EI
l^3
[
6 − 3 l
− 3 l 2 l^2
] {
Y 1
Y 2
}
=
{
P 1
P 2
}
whereIis the area moment of intertia of the cross section,Eis Young’s modulus, and
lthe length. Determine the displacements,Yi, and the sensitivities of the deflections,
∂Yi/∂dand∂Yi/∂t (i= 1 , 2 ), for the following data:E= 30 × 106 psi,l=20 in.,d= 2
in.,t= 0 .1 in.,P 1 =100 lb, andP 2 =0.
14.13 The eigenvalues of the cantilever beam shown in Fig. 14.12 are governed by the equation
2 EI
l^3
[
6 − 3 l
− 3 l 2 l^2
] {
Y 1
Y 2
}
=
λρAl
420
[
156 − 22 l
− 22 l 4 l^2
] {
Y 1
Y 2
}
0
A
A
Y 2
P 2
P 1
Y 1
x
l
y
t
Section A-A
d
Figure 14.12 Hollow circular cantilever beam.