Problems 775
Y 1
Y 2
k 1
k 2
k 3
m 1
m 2
Figure 14.13 Two-degree-of-freedom spring–mass system.
whereEis Young’s modulus,Ithe area moment of inertia,lthe length,ρthe mass
density,Athe cross-sectional area,λthe eigenvalue, andY= {Y 1 , Y 2 }T=eigenvector. If
E= 30 × 106 psi,d=2 in.,t= 0 .1 in.,l=20 in., andρg= 0 .283 lb/in^3 , determine
(a)Eigenvaluesλiand eigenvectorsYi(i= 1 , 2 )
(b)Values of∂λi/∂dand∂λi/∂t (i= 1 , 2 )
14.14 In Problem 14.13, determine the derivatives of the eigenvectors∂Yi/∂dand∂Yi/∂t
(i= 1 , 2 ).
14.15 The natural frequencies of the spring–mass system shown in Fig. 14.13 are given by
(forki=k, i= 1 , 2 ,3 andmi=m, i= 1 ,2)
λ 1 =
k
m
=ω^21 , λ 2 =
3 k
m
=ω^22
Y 1 =c 1
{
1
1
}
, Y 2 =c 2
{
1
− 1
}
whereω 1 andω 2 are the natural frequencies of vibration of the system andc 1 andc 2
are constants. The stiffness of each helical spring is given by
k=
d^4 G
8 D^3 n
wheredis the wire diameter,Dthe coil diameter,Gthe shear modulus, andnthe
number of turns of the spring. Determine the values of∂ωi/∂Dand∂Yi/∂Dfor the
following data:d= 0 .04 in.,G= 11. 5 × 106 psi,D= 0 .4 in.,n=10, andm= 32 .2 lb
- s^2 /in. The stiffness and mass matrices of the system are given by
[K]=k
[
2 − 1
−1 2
]
, [M]=m
[
1 0
0 1
]
14.16 Find the minimum volume design of the truss shown in Fig. 14.14 with constraints on
the depth of the truss (y), cross-sectional areas of the bars (A 1 andA 2 ), and the stresses