Mathematics and Origami
Fold A over D to get C ́:
()
()
4 4
1
2
1
4
1
2
1
2
2
1
1
2
1
2
́ ́
x x
x
AD BD
AC CD = − +
−
= −
−
−
=
−
= = =
Fold B over C ́ to get D ́:
8 8
1
4
1
2
1
2
4 4
1
2
1
1
2
1 ́
2
́
́ ́ ́
x
x
BC AC
BD CD = − + −
− − +
=
−
= = =
Fold A over D ́ to get C ́ ́:
16 16
1
8
1
4
1
2
1
2
8 8
1
4
1
2
1
1
2
1 ́
2
́
́ ́ ́ ́ ́
x
x
AD BD
AC C D = − + − +
− − + −
=
−
= = =
Fold B over C ́ ́ to get D ́ ́:
=
− − + − +
=
−
= = =
2
16 16
1
8
1
4
1
2
1
1
2
1 ́ ́
2
́ ́
́ ́ ́ ́ ́ ́
x
BC AC
BD C D
32 32
1
16
1
8
1
4
1
2
1 x
− + − + −
and so on. The following step (7th fold) will give:
AC ́ ́ ́= − + − + − + −.....=
2 2
1
2
1
2
1
2
1
2
1
2
1
1 2 3 4 5 6 6
x
Lim x
− + − + − + −.....=
2 2
1
2
1
2
1
2
1
2
1
2
1
2 3 4 5 6 7 7
x
2
1
Lim x
It may be noted that the limit of x is made up of the algebraic sum of certain powers of 2, like
2 (for j values from 1 to n).−j
Adding up the former two expressions, we ́ll have:
+
2
1
1 Lim 6 7 7
2 2
1
2 2
1 x x
x= + − +
2
3
Lim x 7 6 7 x 7 7 x
2
3
2
1
2
1
2
1
2
1
2
1
2
1
= − +
= − + +
(^3) A C C ́ D B
(^4) A C C ́ D D ́ B
(^5) A C C ́ C ́ ́ D D ́ B
(^6) A
C C ́ C ́ ́ D D ́ D ́ ́ B