Mathematics and OrigamiThe succession of zeros and ones defines the folding sequence that was not so clear in
Fujimoto ́s method. That is gathered in the figures to follow.
The procedure is this: fold the end A over the last fold when there is a correspondence
with a 0 , and end B, also over the last fold produced, if there is correspondence with an 1.
- Fold the strip by half to get 0 , 5
2
1
AC= =- and successive: assign zeros and ones as seen.
A over C to get 0 , 25
41
AD= =- A ,, D ,, 0 , 125
8
1
AE= =- B ,, E ,, () 0 , 4375
16
1
21
1
21
BF= −AE = − =- A ,, F ,, () 0 , 28125
32
1
41
21
1
21
AG= −BF = − + =- A ,, G ,, 0 , 140625
64
1
81
41
21
AH= AG= − + =- B ,, H ,, () 0 , 4296875
128
1
161
81
21
1
21
BI= −AH = − + − =- A ,, I ,, () 0 , 2851562
256
1
321
161
41
21
1
21
AJ= −BI = − + − + =- A ,, J ,, 0 , 1425781
512
1
641
321
81
41
21
AK= AJ= − + − + =- B ,, K ,, () 0 , 4287109
1024
1
1281
641
161
81
21
1
21
BL= −AK = − + − + − =- A ,, L ,, () 0 , 2856445
2048
1
2561
1281
321
161
41
21
1
21
AM= −BL = − + − + − + =- A ,, M ,, 2 2 2 2 2 2 2 0 , 1428222
2
(^123568912)
AN= AM= − − − + − − − + − − − + − =
0,1428571
- 0,125
0,0178571 - 0,015625
0,0022321 - 0,001953125
0,000278975 0,001001001
0,001001
0,001
2
2
2
2(2
(2
(2
- 3
- 6
- 9
0- 1
- 2
- 3
)
)
)^1
..............^7