MATHEMATICS AND ORIGAMI

(Dana P.) #1

Jesús de la Peña Hernández



  • New point G lies on T after flattening because:

    • C → F (symmetry about tangent on T ́; Fig.1 Point 13.3.2)

    • CP → PF (same symmetry)

    • F ́G + GC = 2a (radius of cd) = F ́T + TF (T, point on the ellipse).

    • Not being so, broken line CGF ́ within Fig. 3 would not straighten along CGF ́ when un-
      folding Fig. 4.




The result is: ∆CGP = ∆FTP after coincidence of their vertices: C ≡ F; P ≡ P; G ≡ T.
This means that Ang. TPF = Ang. CPG
Hence,
Ang. TPF = Ang F ́PT ́ = Ang. GPC = 180º - Ang. XPF ́ (*)
Ang. CPX = Ang. XPF (symmetry about the tangent in T ́).
Ang. FPF ́= 180º - (Ang. XPF + Ang. T ́PF ́).
Ang. GPT ́= 180º - (Ang. XPC + Ang. CPG)
Ang. F ́PG = Ang. T ́PG + Ang. F ́PT ́
Ang. F ́PT = Ang. F ́PF + Ang. FPT

Therefore Ang. F ́PG = Ang. F ́PT : it demonstrates the 1st part of Poncelet theorem.
(*) ,, ,, 2nd ,, ,,

Interlude

Free download pdf