MATHEMATICS AND ORIGAMI

(Dana P.) #1
Mathematics and Origami

ACKNOWLEDGEMENT


Luis Espada Montenegro Antonio Ledesma López
Teodosio de la Fuente Ríos Miguel Angel Martín Monje
Jeremías García García Alfredo Pérez Jiménez
Mª Belén Garrido Garrido Alejandro Rodríguez Campos
Fernando Gilgado Gómez Chika Tomita
Juan Gimeno Viguera Santiago Turrión Ramos
Julián González Gª Gutiérrez José Aníbal Voyer Iniesta

BIBLIOGRAPHY


(1): (2) // (3)
(1) Author
(2) Bibliographic reference
(3) Pages in present book “Mathematics and Origami”


Makio Araki: The origins of Origami or the other side to Origami. Origami Science & Art. Pro-
ceedings of the Second International Meeting of Origami Science and Scientific Origami. Otsu, Ja-
pan; Nov. – Dec. 1994. Editor Koryo Miura. Seian University of Art and Design. The International
Center of Arts
. Pg. 495.// X.
Alex Bateman: http://www.mrc-cpe.cam.ac.uk/jo-ng/agb/tessellation/square-dance.gif // 128.
David Brill: Brilliant Origami. Ed. Japan Publications Inc. Tokio, New York, 1996.// 102.
Sixto Cámara Tecedor: Elementos de Geometría Analítica. 3rd edition, Madrid 1945.// 133,137,169,
242, 251, 253, 254, 256.
Masahiro Chatani: Origamic Architecture. Ibid . Pg. 303.// 161.
Enciclopedia Espasa.// 231, 239.
Enciclopedia Técnica Salvat.// 98, 203.
Peterpaul Forcher: Artistic tiling problem by origami. Ibid
. Pg. 313.// 123.
Sidney French: Geometrical Division. A BOS monography.// 85.
Shuzo Fujimoto / Humiaki Huzita: Fujimoto successive method to obtain odd-number section of a
segment or an angle by folding operations. Ibid . Pag.1.// 94.
Kazuo Haga: The geometry of origami. Ed. Nihon Hyoron-Sha.// 8, 79.
Handbook of pulp and paper technology (Ed. 1970 Keneth W. Britt).// 237
Humiaki Huzita: Right angle billiard games and their solutions by folding paper. Ibid
. Pg. 541.//
37, 42, 80, 82, 109.
Toshiyuki Iwasaki: How the origami model explains the theory of kikujutsu. Ibid **. Pg. 481.// 176.

Free download pdf