MATHEMATICS AND ORIGAMI

(Dana P.) #1

Jesús de la Peña Hernández


and rotate it 180º around O, Fig. 2 of Point 7.13 is obtained. Both figures give the same results
for t:

a = 51.2721º b=-23.9909º g = -60.9719
t 1 = tg a = 1.2469 t 2 = tg b = -0.445 0 t 3 = tg g = -1.8019

Any of them satisfy the equation

t^3 +t^2 − 2 t− 1 = 0

Fig. 4 justifies the association of Fig. 3 to the 3rd degree equation:

∆IBD; ∆EGF are similar:

GE

FG
ID

BD
= ;
1

2
2 −

=
ED

BD
(1)

∆IBC; ∆CEF are also similar:

BD

IC
GF

EC
= ;
BD

ED CD +CD
=
− 2
2

(2)

Equalising
2

BD
in (1) and (2):

ED CD

CD
ED −

+
=

2
1

2
;
1

2
+

=
ED

CD (3)

In ∆IBC we also have (t = tg a):
BD=IDtgα= 2 t ; Ang.BCI = 180 – 2a ; BD=DCtg() 180 − 2 α
Then:

tg 1

2 tg

2 tg (^22)

=− =
α
α
α
DC
t DC ; t^2 − 1 =DC (4)
In ∆EGF, Ang.FEG = a, so:
GE
GF
t= ;
1
2


ED
t (5)
Expressions (3), (4), (5) form a t parametric system that will allow us to obtain the 3rd degree
equation we are after:
F
I
4
B
D CG E

Free download pdf