Jesús de la Peña Hernández
and rotate it 180º around O, Fig. 2 of Point 7.13 is obtained. Both figures give the same results
for t:
a = 51.2721º b=-23.9909º g = -60.9719
t 1 = tg a = 1.2469 t 2 = tg b = -0.445 0 t 3 = tg g = -1.8019
Any of them satisfy the equation
t^3 +t^2 − 2 t− 1 = 0
Fig. 4 justifies the association of Fig. 3 to the 3rd degree equation:
∆IBD; ∆EGF are similar:
GE
FG
ID
BD
= ;
1
2
2 −
=
ED
BD
(1)
∆IBC; ∆CEF are also similar:
BD
IC
GF
EC
= ;
BD
ED CD +CD
=
− 2
2
(2)
Equalising
2
BD
in (1) and (2):
ED CD
CD
ED −
+
=
−
2
1
2
;
1
2
+
=
ED
CD (3)
In ∆IBC we also have (t = tg a):
BD=IDtgα= 2 t ; Ang.BCI = 180 – 2a ; BD=DCtg() 180 − 2 α
Then:
tg 1
2 tg
2 tg (^22)
−
=− =
α
α
α
DC
t DC ; t^2 − 1 =DC (4)
In ∆EGF, Ang.FEG = a, so:
GE
GF
t= ;
1
2
−
ED
t (5)
Expressions (3), (4), (5) form a t parametric system that will allow us to obtain the 3rd degree
equation we are after:
F
I
4
B
D CG E