Science - USA (2021-11-05)

(Antfer) #1

  1. K. K. Kimet al., Synthesis of monolayer hexagonal boron
    nitride on Cu foil using chemical vapor deposition.Nano Lett. 12 ,
    161 – 166 (2012). doi:10.1021/nl203249a; pmid: 22111957

  2. T. Zhaoet al., Ultrafast growth of nanocrystalline graphene
    films by quenching and grain-size-dependent strength and
    bandgap opening.Nat. Commun. 10 , 4854 (2019).
    doi:10.1038/s41467-019-12662-z; pmid: 31649240

  3. C. T. Tohet al., Synthesis and properties of free-standing
    monolayer amorphous carbon.Nature 577 , 199–203 (2020).
    doi:10.1038/s41586-019-1871-2; pmid: 31915396

  4. Z. Cai, B. Liu, X. Zou, H. M. Cheng, Chemical Vapor
    Deposition Growth and Applications of Two-Dimensional
    Materials and Their Heterostructures.Chem. Rev. 118 ,
    6091 – 6133 (2018). doi:10.1021/acs.chemrev.7b00536;
    pmid: 29384374

  5. P. R. Kidambiet al., A Scalable Route to Nanoporous
    Large-Area Atomically Thin Graphene Membranes by Roll-to-
    Roll Chemical Vapor Deposition and Polymer Support
    Casting.ACS Appl. Mater. Interfaces 10 , 10369–10378 (2018).
    doi:10.1021/acsami.8b00846; pmid: 29553242

  6. L. Wanget al., Epitaxial growth of a 100-square-centimetre
    single-crystal hexagonal boron nitride monolayer on copper.
    Nature 570 , 91–95 (2019). doi:10.1038/s41586-019-1226-z;
    pmid: 31118514

  7. T. Kobayashiet al., Production of a 100-m-long high-quality
    graphene transparent conductive film by roll-to-roll
    chemical vapor deposition and transfer process.Appl. Phys.
    Lett. 102 , 023112 (2013). doi:10.1063/1.4776707

  8. S. C. O’Hernet al., Selective molecular transport through
    intrinsic defects in a single layer of CVD graphene.ACS Nano
    6 , 10130–10138 (2012). doi:10.1021/nn303869m;
    pmid: 23030691

  9. N. Petroneet al., Chemical vapor deposition-derived
    graphene with electrical performance of exfoliated graphene.
    Nano Lett. 12 , 2751–2756 (2012). doi:10.1021/nl204481s;
    pmid: 22582828

  10. X. Xuet al., Ultrafast epitaxial growth of metre-sized
    single-crystal graphene on industrial Cu foil.Sci. Bull. (Beijing)
    62 , 1074–1080 (2017). doi:10.1016/j.scib.2017.07.005

  11. J. H. Leeet al., Wafer-scale growth of single-crystal
    monolayer graphene on reusable hydrogen-terminated
    germanium.Science 344 , 286–289 (2014). doi:10.1126/
    science.1252268; pmid: 24700471

  12. J. S. Leeet al., Wafer-scale single-crystal hexagonal boron
    nitride film via self-collimated grain formation.Science 362 ,
    817 – 821 (2018). doi:10.1126/science.aau2132;
    pmid: 30442807

  13. T. Wuet al., Fast growth of inch-sized single-crystalline
    graphene from a controlled single nucleus on Cu-Ni alloys.
    Nat. Mater. 15 , 43–47 (2016). doi:10.1038/nmat4477;
    pmid: 26595118

  14. X. Xuet al., Ultrafast growth of single-crystal graphene
    assisted by a continuous oxygen supply.Nat. Nanotechnol. 11 ,
    930 – 935 (2016). doi:10.1038/nnano.2016.132;
    pmid: 27501317

  15. I. V. Vlassiouket al., Evolutionary selection growth of
    two-dimensional materials on polycrystalline substrates.Nat.
    Mater. 17 , 318–322 (2018). doi:10.1038/s41563-018-0019-3;
    pmid: 29531368

  16. P. R. Kidambiet al., Selective Nanoscale Mass Transport
    across Atomically Thin Single Crystalline Graphene
    Membranes.Adv. Mater. 29 , 1605896 (2017). doi:10.1002/
    adma.201605896; pmid: 28306180

  17. P. R. Kidambiet al., Assessment and control of the
    impermeability of graphene for atomically thin membranes
    and barriers.Nanoscale 9 , 8496–8507 (2017). doi:10.1039/
    C7NR01921A; pmid: 28604878

  18. S. C. O’Hernet al., Nanofiltration across defect-sealed
    nanoporous monolayer graphene.Nano Lett. 15 , 3254– 3260
    (2015). doi:10.1021/acs.nanolett.5b00456; pmid: 25915708

  19. P. Chenget al., Facile Size-Selective Defect Sealing in
    Large-Area Atomically Thin Graphene Membranes for Sub-
    Nanometer Scale Separations.Nano Lett. 20 , 5951– 5959
    (2020). doi:10.1021/acs.nanolett.0c01934; pmid: 32628858

  20. J. M. Yuket al., High-resolution EM of colloidal nanocrystal
    growth using graphene liquid cells.Science 336 , 61– 64
    (2012). doi:10.1126/science.1217654; pmid: 22491849

  21. P. R. Kidambiet al., Facile Fabrication of Large-Area
    Atomically Thin Membranes by Direct Synthesis of Graphene
    with Nanoscale Porosity.Adv. Mater. 30 , e1804977 (2018).
    doi:10.1002/adma.201804977; pmid: 30368941

  22. P. Cheng, N. K. Moehring, J. C. Idrobo, I. N. Ivanov,
    P. R. Kidambi, Scalable synthesis of nanoporous atomically


thin graphene membranes for dialysis and molecular
separationsviafacile isopropanol-assisted hot lamination.
Nanoscale 13 , 2825–2837 (2021). doi:10.1039/
D0NR07384A; pmid: 33508042


  1. Y. Wanget al., Electrochemical delamination of CVD-grown
    graphene film: Toward the recyclable use of copper catalyst.
    ACS Nano 5 , 9927–9933 (2011). doi:10.1021/nn203700w;
    pmid: 22034835

  2. The Price Of Graphene–Graphenea, (available athttps://
    http://www.graphenea.com/pages/graphene-price#.X-uoxdhKhPY)..)

  3. A. Zurutuza, C. Marinelli, Challenges and opportunities in
    graphene commercialization.Nat. Nanotechnol. 9 , 730– 734
    (2014). doi:10.1038/nnano.2014.225; pmid: 25286257

  4. S. Satyapal, U. Department of Energy Hydrogen, F. C. Program,
    “DOE Hydrogen and Fuel Cell Perspectives and Overview of
    the International Partnership for Hydrogen and Fuel Cells in the
    Economy (IPHE)”(2020), (available athttps://www.energy.
    gov/sites/prod/files/2020/07/f77/hfto-satyapal-gabi-
    workshop-jul20.pdf).

  5. G. Alberti, M. Casciola, L. Massinelli, B. Bauer, Polymeric
    proton conducting membranes for medium temperature fuel
    cells (110-160°C).J. Membr. Sci. 185 , 73–81 (2001).
    doi:10.1016/S0376-7388(00)00635-9

  6. K. A. Mauritz, R. B. Moore, State of understanding of nafion.
    Chem. Rev. 104 , 4535–4586 (2004). doi:10.1021/cr0207123;
    pmid: 15669162

  7. C. E. Thomas, Fuel cell and battery electric vehicles
    compared.Int. J. Hydrogen Energy 34 , 6005–6020 (2009).
    doi:10.1016/j.ijhydene.2009.06.003

  8. Y. Wang, D. F. Ruiz Diaz, K. S. Chen, Z. Wang, X. C. Adroher,
    Materials, technological status, and fundamentals of PEM fuel
    cells–A review.Mater. Today 32 , 178–203 (2020).
    doi:10.1016/j.mattod.2019.06.005

  9. M. B. Karimi, F. Mohammadi, K. Hooshyari, Recent
    approaches to improve Nafion performance for fuel cell
    applications: A review.Int. J. Hydrogen Energy 44 ,
    28919 – 28938 (2019). doi:10.1016/j.ijhydene.2019.09.096

  10. S. I. Yoonet al., AA’-Stacked Trilayer Hexagonal Boron Nitride
    Membrane for Proton Exchange Membrane Fuel Cells.
    ACS Nano 12 , 10764–10771 (2018). doi:10.1021/
    acsnano.8b06268; pmid: 30335961

  11. S. M. Holmeset al., 2D Crystals Significantly Enhance the
    Performance of a Working Fuel Cell.Adv. Energy Mater. 7 ,
    1601216 (2017). doi:10.1002/aenm.201601216

  12. X. H. H. Yan, R. Wu, J. B. B. Xu, Z. Luo, T. S. S. Zhao,
    A monolayer graphene–Nafion sandwich membrane for
    direct methanol fuel cells.J. Power Sources 311 , 188– 194
    (2016). doi:10.1016/j.jpowsour.2016.02.030

  13. M. S. H. Boutilieret al., Molecular Sieving Across Centimeter-
    Scale Single-Layer Nanoporous Graphene Membranes.
    ACS Nano 11 , 5726–5736 (2017). doi:10.1021/
    acsnano.7b01231; pmid: 28609103

  14. L. H. Li, J. Cervenka, K. Watanabe, T. Taniguchi, Y. Chen,
    Strong oxidation resistance of atomically thin boron nitride
    nanosheets.ACS Nano 8 , 1457–1462 (2014). doi:10.1021/
    nn500059s; pmid: 24400990

  15. Z. P. Canoet al., Batteries and fuel cells for emerging electric
    vehicle markets.Nat. Energy 3 , 279–289 (2018).
    doi:10.1038/s41560-018-0108-1

  16. B. D. James, J. A. Kalinoski, K. N. Baum,Mass Production
    Cost Estimation for Direct H 2 PEM Fuel Cell Systems for
    Automotive Applications : 2009 Update, US department
    of energy report(2010);www.energy.gov/sites/prod/files/
    2017/06/f34/fcto_sa_2016_pemfc_transportationcost
    analysis.pdf.

  17. Fuel Cells (Hydrogen and Fuel Cell Technologies Office,
    US Department of Energy);www.energy.gov/eere/fuelcells.

  18. G. Saur, A. Milbrandt, Renewable Hydrogen Potential from
    Biogas in the United States.Natl. Renew. Energy Lab.,1– 44
    (2014).

  19. G. L. Soloveichik, Flow Batteries: Current Status and Trends.
    Chem. Rev. 115 , 11533–11558 (2015). doi:10.1021/
    cr500720t; pmid: 26389560

  20. UniEnergy Technologies–Rongke Power, EcoPartnerships;
    https://electrek.co/2017/12/21/worlds-largest-battery-
    200mw-800mwh-vanadium-flow-battery-rongke-power/.

  21. J. Liuet al., Sandwiching h-BN monolayer films between
    sulfonated poly(ether ether ketone) and nafion for proton
    exchange membranes with improved ion selectivity.ACS
    Nano 13 , 2094–2102 (2019). doi:10.1021/acsnano.8b08680;
    pmid: 30768234

  22. S. Bukolaet al., Single-layer graphene as a highly selective
    barrier for vanadium crossover with high proton selectivity.


J. Energy Chem. 59 , 419–430 (2021). doi:10.1016/
j.jechem.2020.11.025


  1. Q. Chenet al., Graphene enhances the proton selectivity of
    porous membrane in vanadium flow batteries.Mater. Des.
    113 , 149–156 (2017). doi:10.1016/j.matdes.2016.10.019

  2. A. I. Miller, Heavy Water: A Manufacturers’Guide for the
    Hydrogen Century.Can. Nucl. Soc. Bull. 22 ,1–14 (2001).

  3. H. K. Rae, Selecting Heavy Water Processes.ACS Symp. Ser.
    68 ,1–26 (1978).

  4. S. Tosti, A. Pozio, Membrane Processes for the Nuclear
    Fusion Fuel Cycle.Membranes 8 , 96 (2018). doi:10.3390/
    membranes8040096; pmid: 30322084
    126.“Report for the Second of Two 2008 Charges to the Nuclear
    Science Advisory Committee on the Isotope Development
    and Production for Research and Applications Program
    Isotopes for the Nation’s Future A Long Range Plan
    NSAC Isotopes Subcommittee”(2009), (available
    athttps://science.osti.gov/-/media/np/nsac/pdf/docs/
    nsaci_ii_report.pdf).

  5. C. Wang, Q. Qiao, T. Shokuhfar, R. F. Klie, High-resolution
    electron microscopy and spectroscopy of ferritin in
    biocompatible graphene liquid cells and graphene
    sandwiches.Adv. Mater. 26 , 3410–3414 (2014). doi:10.1002/
    adma.201306069; pmid: 24497051

  6. A. Yulaevet al., Graphene Microcapsule Arrays for
    Combinatorial Electron Microscopy and Spectroscopy in
    Liquids.ACS Appl. Mater. Interfaces 9 , 26492–26502 (2017).
    doi:10.1021/acsami.7b02824; pmid: 28447785

  7. J. Parket al., Graphene Liquid Cell Electron Microscopy:
    Progress, Applications, and Perspectives.ACS Nano 15 ,
    288 – 308 (2021). doi:10.1021/acsnano.0c10229;
    pmid: 33395264

  8. F. M. Ross, Opportunities and challenges in liquid cell
    electron microscopy.Science 350 , aaa9886–aaa9886 (2015).
    doi:10.1126/science.aaa9886; pmid: 26680204

  9. Y. Han, K. X. Nguyen, Y. Ogawa, J. Park, D. A. Muller,
    Atomically Thin Graphene Windows That Enable High
    Contrast Electron Microscopy without a Specimen Vacuum
    Chamber.Nano Lett. 16 , 7427–7432 (2016). doi:10.1021/
    acs.nanolett.6b03016; pmid: 27960512

  10. J. C. Meyer, C. O. Girit, M. F. Crommie, A. Zettl, Imaging and
    dynamics of light atoms and molecules on graphene.
    Nature 454 , 319–322 (2008). doi:10.1038/nature07094;
    pmid: 18633414

  11. R. R. Nairet al., Graphene as a transparent conductive
    support for studying biological molecules by transmission
    electron microscopy.Appl. Phys. Lett. 97 , 153102 (2010).
    doi:10.1063/1.3492845

  12. K. Naydenova, M. J. Peet, C. J. Russo, Multifunctional
    graphene supports for electron cryomicroscopy.Proc. Natl.
    Acad. Sci. U.S.A. 116 , 11718–11724 (2019). pmid: 31127045

  13. Y. Hanet al., High-yield monolayer graphene grids for
    near-atomic resolution cryoelectron microscopy.Proc. Natl.
    Acad. Sci. U.S.A. 117 , 1009–1014 (2020). doi:10.1073/
    pnas.1919114117; pmid: 31879346

  14. J. D. Stoll, A. Kolmakov, Electron transparent graphene
    windows for environmental scanning electron microscopy in
    liquids and dense gases.Nanotechnology 23 , 505704 (2012).
    doi:10.1088/0957-4484/23/50/505704; pmid: 23165114

  15. S. Nemšáket al., Interfacial Electrochemistry in Liquids
    Probed with Photoemission Electron Microscopy.J. Am.
    Chem. Soc. 139 , 18138–18141 (2017). doi:10.1021/
    jacs.7b07365; pmid: 29148738

  16. K. Koo, K. S. Dae, Y. K. Hahn, J. M. Yuk, Live Cell Electron
    Microscopy Using Graphene Veils.Nano Lett. 20 ,
    4708 – 4713 (2020). doi:10.1021/acs.nanolett.0c00715;
    pmid: 32369367

  17. S. Bukola, K. Beard, C. Korzeniewski, J. M. Harris,
    S. E. Creager, Single-Layer Graphene Sandwiched between
    Proton-Exchange Membranes for Selective Proton
    Transmission.ACS Appl. Nano Mater. 2 , 964–974 (2019).
    doi:10.1021/acsanm.8b02270

  18. B. Jiang, L. Wu, L. Yu, X. Qiu, J. Xi, A comparative study of
    Nafion series membranes for vanadium redox flow batteries.
    J. Membr. Sci. 510 , 18–26 (2016). doi:10.1016/
    j.memsci.2016.03.007

  19. S. Slade, S. A. Campbell, T. R. Ralph, F. C. Walsh, Ionic
    Conductivity of an Extruded Nafion 1100 EW Series
    of Membranes.J. Electrochem. Soc. 149 , A1556 (2002).
    doi:10.1149/1.1517281

  20. N. T. Ekanayake, J. Huang, J. Jakowski, B. G. Sumpter,
    S. Garashchuk, Relevance of the Nuclear Quantum Effects on
    the Proton/Deuteron Transmission through Hexagonal Boron


Kidambiet al.,Science 374 , eabd7687 (2021) 5 November 2021 11 of 12


RESEARCH | REVIEW

Free download pdf