Advanced High-School Mathematics

(Tina Meador) #1

108 CHAPTER 2 Discrete Mathematics


(b) Using part (a) show that

∑k
l=0

Ñ
k
l

é
(−1)llk = (−1)kk!

(Hint: this can be shown using induction^27 .)
(c) Conclude that ifC(x) = (x−1)k, a the solution ofC(u) =d,
whered=d, d, ...is written as

un=ank+ lower-degree terms inn,

thena=

d
k!

.


  1. Let F 1 = 1, F 2 = 1, F 3 = 2,...be the Fibonacci sequence. Show
    that one has the curious identity


x
1 −x−x^2

=

∑∞
k=1

Fkxk.

(^27) Here’s how:
∑k
l=0
Ç
k
l
å
(−1)llk =
∑k
l=0
ñÇ
k− 1
l
å




  • Ç
    k− 1
    l− 1
    åô
    (−1)llk


    ∑k
    l=0
    Ç
    k− 1
    l
    å
    (−1)llk+
    ∑k
    l=0
    Ç
    k− 1
    l− 1
    å
    (−1)llk


    k∑− 1
    l=0
    Ç
    k− 1
    l
    å
    (−1)llk−
    k∑− 1
    l=0
    Ç
    k− 1
    l
    å
    (−1)l(l+ 1)k
    = −
    k∑− 1
    l=0
    Ç
    k− 1
    l
    å
    (−1)l
    k∑− 1
    m=0
    Ç
    k
    m
    å
    lm
    = −
    k∑− 1
    m=0
    k∑− 1
    l=0
    Ç
    k
    m
    åÇ
    k− 1
    l
    å
    (−1)llm
    = −
    k∑− 1
    m=0
    Çk
    m
    åk∑− 1
    l=0
    Çk− 1
    l
    å
    (−1)llm
    = −
    Ç
    k
    k− 1
    åk∑− 1
    l=0
    Ç
    k− 1
    l
    å
    (−1)llk−^1 (we’ve used (a))
    = −k·(−1)k−^1 (k−1)! = (−1)kk! (induction)



Free download pdf