108 CHAPTER 2 Discrete Mathematics
(b) Using part (a) show that
∑k
l=0
Ñ
k
l
é
(−1)llk = (−1)kk!
(Hint: this can be shown using induction^27 .)
(c) Conclude that ifC(x) = (x−1)k, a the solution ofC(u) =d,
whered=d, d, ...is written as
un=ank+ lower-degree terms inn,
thena=
d
k!
.
- Let F 1 = 1, F 2 = 1, F 3 = 2,...be the Fibonacci sequence. Show
that one has the curious identity
x
1 −x−x^2
=
∑∞
k=1
Fkxk.
(^27) Here’s how:
∑k
l=0
Ç
k
l
å
(−1)llk =
∑k
l=0
ñÇ
k− 1
l
å
Ç
k− 1
l− 1
åô
(−1)llk
∑k
l=0
Ç
k− 1
l
å
(−1)llk+
∑k
l=0
Ç
k− 1
l− 1
å
(−1)llk
k∑− 1
l=0
Ç
k− 1
l
å
(−1)llk−
k∑− 1
l=0
Ç
k− 1
l
å
(−1)l(l+ 1)k
= −
k∑− 1
l=0
Ç
k− 1
l
å
(−1)l
k∑− 1
m=0
Ç
k
m
å
lm
= −
k∑− 1
m=0
k∑− 1
l=0
Ç
k
m
åÇ
k− 1
l
å
(−1)llm
= −
k∑− 1
m=0
Çk
m
åk∑− 1
l=0
Çk− 1
l
å
(−1)llm
= −
Ç
k
k− 1
åk∑− 1
l=0
Ç
k− 1
l
å
(−1)llk−^1 (we’ve used (a))
= −k·(−1)k−^1 (k−1)! = (−1)kk! (induction)