SECTION 3.6 Cubic Discriminant 173
1 2 3
2
4
6
x
y
x^3 −xy+2=0
y+x =c
2
level curves
Equation 1: y=2/x+x²
Equation 2: y=c−x²
Equation 3: y=2.1−x²
- Compute the maximum value ofEquation 4: y=4.2−x^2 xy, given that
x^2 +y= 4. - The polynomialS(x 1 ,x 2 ,x 3 ) =x^31 +x^32 +x^33 is symmetric inx 1 ,x 2 ,x 3
and can be expanded in the elementary symmetric polynomials
σ 1 =x 1 +x 2 +x 3 , σ 2 =x 1 x 2 +x 1 x 3 +x 2 x 3 , σ 3 =x 1 x 2 x 3.
Watch this:
x^31 +x^32 +x^33 = (x 1 +x 2 +x 3 )^3
− 3 x^21 (x 2 +x 3 )− 3 x^22 (x 1 +x 3 )− 3 x^23 (x 1 +x 2 )− 6 x 1 x 2 x 3
= (x 1 +x 2 +x 3 )^3 −3(x 1 +x 2 +x 3 )(x 1 x 2 +x 1 x 3 +x 2 x 3 )
+ 3x 1 x 2 x 3
= σ^31 − 2 σ 1 σ 2 + 3σ 3.
Now try to write the symmetric polynomial x^41 +x^42 +x^43 as a
polynomial inσ 1 , σ 2 , σ 3.
- Let f(x) = ax^3 +bx^2 +cx+d, and so the derivative is f′(x) =
3 ax^2 + 2bx+c. Denote byR(f) the determinant