Advanced High-School Mathematics

(Tina Meador) #1

SECTION 4.1 Basics of Set Theory 197


4.1.4 Mappings between sets


LetAandB be sets. Amappingfrom Ato B is simply a function


fromAto B; we often express this by writingf :A→B or A→f B.
Let’s give some examples (some very familiar):



  • f:R→Ris given byf(x) =x^2 −x+ 1, x∈R

  • f:R→Cis given byf(x) = (x−1) +ix^2 , x∈R

  • LetZ+⊆Zbe the set ofpositiveintegers and defineg:Z^2 →R
    byg(m) = cos(2π/n), n∈Z+

  • h:R×R→Ris given byf(x,y) =x−y, x, y∈R.

  • γ:R×R→Ris given byγ(x,y) =x^2 +y^2

  • q:Z→Zis given byq(n) =^12 (n^2 +n), n∈Z

  • μ:Z+→{− 1 , 0 , 1 }is given by


μ(n) =







1 ifnis the product of an even number of distinct primes
− 1 ifnis the product of an odd number of distinct primes
0 ifnis not the product of distinct primes

Thus, for example, μ(1) = 0. Also, μ(6) = 1, as 6 = 2·3, the
product of two distinct primes. Likewise,μ(5) =μ(30) =−1, and
μ(18) = 0.


  • h:R×R→Cis given byh(x,y) =x+iy, x, y∈R

  • σ:{ 1 , 2 , 3 , 4 , 5 , 6 }→{ 1 , 2 , 3 , 4 , 5 , 6 }is represented by


σ:







1 2 3 4 5 6

↓ ↓ ↓ ↓ ↓ ↓

2 5 3 4 1 6






Free download pdf