SECTION 5.4 Polynomial Approximations 295
Further valid sums can be obtained by differentiating.
Exercises
- Find the Maclaurin series expansion for each of the functions be-
low:
(a)
1
1 −x^2
(b)
2 x
1 − 2 x^2
(c)
1
(1−x)^2
(d)
1
(1−x^2 )^2
(e) x^2 sinx
(f) sin^2 x (Hint: Use a double-
angle identity.)
(g)
1
(1−x)^3
(h) ln(1 +x^2 )
(i) tan−^14 x
(j) xex
2
- Find the Maclaurin series expansion for the rational function
f(x) =
x+ 1
x^2 +x+ 1
. (Don’t try to do this directly; use an appro-
priate trick.) - Sum the following series:
(a)
∑∞
n=0
(x+ 1)n
(b)
∑∞
n=1
n(x+ 1)n
(c)
∑∞
n=0
(−1)nxn
(n+ 1)!
(d)
∑∞
n=1
(−1)n+1xn
n
(e)
∑∞
n=1
(−1)n+1x^2 n
n
(f)
∑∞
n=1
n^2 xn
- Sum the following numerical series:
(a)
∑∞
n=0
(−1)nπ^2 n+1
(2n+ 1)!
(b)
∑∞
n=1
(−1)n+1(e−1)n
n
(c)
∑∞
n=0
(−1)n(ln 2)n
(n+ 1)!
(d)
∑∞
n=1
(−1)n+1
n 22 n
(e)
∑∞
n=1
n^2
3 n