Advanced High-School Mathematics

(Tina Meador) #1

SECTION 5.5 Differential Equations 313


y
x+ 1

=

∫ xdx
(x+ 1)^2

=

∫ (x+ 1−1)dx
(x+ 1)^2

=

∫ Ñ 1

x+ 1


1

(x+ 1)^2

é
dx

= ln(x+ 1) +

1

x+ 1

+C

It follows, therefore, that


y = (x+ 1) ln(x+ 1) +c(x+ 1),

wherecis an arbitrary constant.


Exercises



  1. Solve the following first-order ODE.
    (a) xy′+ 2y= 2x^2 , y(1) = 0
    (b) 2x^2 y′+ 4xy=e−x, y(2) = 1.
    (c) xy′+ (x−2)y= 3x^3 e−x, y(1) = 0
    (d) y′lnx+


y
x
=x, y(1) = 0
(e) y′+ (cotx)y= 3 sinxcosx, y(0) = 1
(f) x(x+ 1)y′−y= 2x^2 (x+ 1), y(2) = 0


  1. The first-orderBernoulliODE are of the form


y′+p(x)y=q(x)yn,
wherenis any number other than 1. Show that the substitution
u=y^1 −n brings the above Bernoulli equation into the first-order
linear ODE

1
1 −n

u′+p(x)u=q(x).
Free download pdf