368 CHAPTER 6 Inferential Statistics
∫t−a
−∞ fX(x)dx =
∫t
−∞fX(x−a)dx.
In other words, for all real numberst, we have
∫t
−∞fY(x)dx =
∫t
−∞fX(x−a)dx.
This implies (e.g., by the Fundamental Theorem of Calculus) that
fX+a(x) = fX(x−a) (∗)
for allx∈R.
Next, we would like to compute the density function for the random
variableY =X^2 in terms of that ofX. To do this, note that
∫t
0 fX
(^2) (x)dx = P(X^2 < t) = P(−
√
t < X <
√
t) =
∫√t
−√tf(x)dx.
An application of the Fundamental Theorem of Calculus gives
fX^2 (x) =
1
2
√
x
(
fX(
√
x)−fX(−
√
x)
)
. (∗∗)
Using equations (*) and (**), we can compute the variance of the con-
tinuous random variableXhaving meanμ, as follows. We have
Var(X) = E((X−μ)^2 )
=
∫∞
0 xf(X−μ)^2 (x)dx
by (**)=^1
2
∫∞
0
√
xfX−μ(
√
x)dx −
1
2
∫∞
0
√
xfX−μ(−
√
x)dx
(u=√x)
=
∫∞
0 u
(^2) fX−μ(u)du+
∫ 0
−∞u
(^2) fX−μ(u)du=
∫∞
−∞u
(^2) fX−μ(u)du
by (*)= ∫∞
−∞
u^2 fX(u+μ)du
∫∞
−∞(u−μ)
(^2) fX(u)du,
∫∞
−∞(x−μ)
(^2) fX(x)dx.