Advanced High-School Mathematics

(Tina Meador) #1

368 CHAPTER 6 Inferential Statistics


∫t−a
−∞ fX(x)dx =

∫t
−∞fX(x−a)dx.

In other words, for all real numberst, we have


∫t
−∞fY(x)dx =

∫t
−∞fX(x−a)dx.

This implies (e.g., by the Fundamental Theorem of Calculus) that


fX+a(x) = fX(x−a) (∗)

for allx∈R.


Next, we would like to compute the density function for the random
variableY =X^2 in terms of that ofX. To do this, note that


∫t
0 fX

(^2) (x)dx = P(X^2 < t) = P(−



t < X <


t) =

∫√t
−√tf(x)dx.
An application of the Fundamental Theorem of Calculus gives


fX^2 (x) =

1

2


x

(
fX(


x)−fX(−


x)

)

. (∗∗)


Using equations (*) and (**), we can compute the variance of the con-
tinuous random variableXhaving meanμ, as follows. We have


Var(X) = E((X−μ)^2 )


=

∫∞
0 xf(X−μ)^2 (x)dx
by (**)=^1
2

∫∞
0


xfX−μ(


x)dx −

1

2

∫∞
0


xfX−μ(−


x)dx
(u=√x)
=

∫∞
0 u

(^2) fX−μ(u)du+
∫ 0
−∞u
(^2) fX−μ(u)du=
∫∞
−∞u
(^2) fX−μ(u)du
by (*)= ∫∞
−∞
u^2 fX(u+μ)du


∫∞
−∞(u−μ)
(^2) fX(u)du,


∫∞
−∞(x−μ)
(^2) fX(x)dx.

Free download pdf