10.3 Multipole Expansion and Multipole Moments in Electrostatics 169
|r−r′|−^1 =
∑∞
= 0
1
!
(− 1 )∂r−^1
∂rμ 1 ∂rμ 2 ···∂rμ
rμ′ 1 rμ′ 2 ···rμ′. (10.23)
The spatial derivatives ofr−^1 are the descending multipole potential tensors. Since
the tensorsrμ′ 1 rμ′ 2 ···rμ′,in(10.23), are contracted with irreducible tensorsX...,
the irreducible partrμ′ 1 rμ′ 2 ···rμ′ only contributes in the product. Thus (10.23)is
equivalent to
|r−r′|−^1 =
∑∞
= 0
1
!
Xμ 1 μ 2 ···μ(r)rμ′ 1 rμ′ 2 ···rμ′. (10.24)
Insertion of this expansion into (10.22) leads to
φ=
1
4 πε 0
∑∞
= 0
1
!( 2 − 1 )!!
Xμ 1 μ 2 ···μ(r)Qμ 1 μ 2 ···μ. (10.25)
Here
Qμ 1 μ 2 ···μ=
∫
ρ(r′)( 2 − 1 )!!rμ′ 1 rμ′ 2 ···rμ′d^3 r′=
∫
ρ(r)X ̃μ 1 μ 2 ···μd^3 r,
(10.26)
is the 2-pole moment of the charge distribution. The quantityX ̃μ 1 μ 2 ···μis the
ascending multipole defined in (10.16).
Due to (10.9), the expansion (10.25) is equivalent to
φ=
1
4 πε 0
∑∞
= 0
1
!
r−(^2 +^1 )rμ 1 rμ 2 ···rμ Qμ 1 μ 2 ···μ. (10.27)
Withtheintegrationvariabledenotedbyrinsteadofr′,thefirstfourofthesemultipole
moments are the
total chargeormonopole moment
Q=
∫
ρ(r)d^3 r,
thedipole moment
Qμ≡pelμ=
∫
ρ(r)rμd^3 r, (10.28)
thequadrupole moment
Qμν=
∫
ρ(r) 3 rμrνd^3 r, (10.29)