256 13 Spin Operators
∑
m 1
∑
m 2
|j 1 m 1 〉|j 2 m 2 〉(j 1 m 1 ,j 2 m 2 |jm)=|jm〉.
The nondiagonal elements of the spherical harmonicY(m)(u)are related to the spher-
ical tensor operators by
[
Y(m)(u)
]jj′
=PjY(m)(u)Pj
′
=
√
2 j+ 1
4 π
(
j 0 , 0 |j′ 0
)
T
jj′
m. (13.67)
By analogy to (13.67), the operator form of the Cartesian tensoruμ 1 ···uμ is
(uμ 1 ···uμ)jj
′
=
√
!
( 2 + 1 )!!
√
2 j+ 1 (j 0 , 0 |j′ 0 )T
jj′
μ 1 ···μ. (13.68)
The tensor operators have the properties:
(i) The hermitian adjoint ofTjj
′
μ 1 ···μis
(Tjj
′
μ 1 ···μ)†=(−^1 )j−j
′
Tj
′j
μ 1 ···μ. (13.69)
(ii) Orthogonality and normalization
tr{Tjj
′
μ 1 ···μ(T
jj′
ν 1 ···ν′)
†}=δ
′Δ
()
μ 1 ···μ,ν 1 ···ν. (13.70)
The theoretical description of therotational Raman scatteringinvolves the elements
oftheanisotropicmolecularpolarizabilitytensorwhicharenon-diagonalwithrespect
to the rotational quantum number, cf. (13.53). The relevant operators are
PjuμuνPj
′
=(uμuν)jj
′
,
withj′=j±2. In particular, one has
(uμuν)jj±^2 =
√
2
15
√
2 j+ 1 (j 0 , 20 |j± 20 ) Tμνjj±^2. (13.71)
The Clesch-Gordan coefficients are
(j 0 , 20 |j+ 20 )=
√
3
2
√
(j+ 1 )(j+ 2 )
( 2 j+ 1 )( 2 j+ 3 )
,
(j 0 , 20 |j− 20 )=
√
3
2
√
j(j− 1 )
( 2 j+ 1 )( 2 j− 1 )