260 14 Rotation of Tensors
The rotation by an finite angleφ=nδφis given by( 1 +δφH)n. Withδφ=φ/n,
the limitn→∞leads to
a′μ=(exp[φH])μνaν≡Rμν(φ)aν. (14.3)
In principal, the rotation tensorRcan be expressed in terms of the power series
Rμν(φ)=δμν+φHμν+
1
2
φ^2 HμκHκν+.... (14.4)
Due to the special properties ofH, to be discussed next,Rcan be represented in a
more compact form.
14.1.2 Hamilton Cayley and Projection Tensors
Due toHμκHκν=hμhν−δμνandhσHσν=0, the tensorHobeys the relation
H^3 +H= 0. (14.5)
This corresponds to a Hamilton-Cayley equation forHwith the eigenvaluesim,
wherem=0,±1. Second rank projection tensorsP(m)are defined by
P(m)=
∏
m′=m
H−im′ 1
im−im′
, m,m′= 0 ,± 1. (14.6)
In (14.6), the symbol 1 stands for the second rank unit tensor, viz. forδμν. These
projectors are explicitly given by
Pμν(^0 )=hμhν, Pμν(±^1 )=
1
2
(δμν−hμhν∓iεμλνhλ). (14.7)
The projection tensors possess the following properties:
Pμκ(m)P(m
′)
κν =δmm′P
(m)
μν, (14.8)
(Pμν(m))∗=Pμν(−m)=Pνμ(m), (14.9)
∑^1
m=− 1
Pμν(m)=δμν, Pμμ(m)= 1. (14.10)
The eigenvalue equation
Pμκ(m)Hκν=HμκPκν(m)=imPμν(m), (14.11)