Tensors for Physics

(Marcin) #1

358 17 Tensor Dynamics


The basis tensorsTiare defined by


Tμν^0 =


3

2

ezμeνz, Tμν^1 =

1

2


2

(

eμxeνx−eyμeyν

)

,

Tμν^2 =


2 eμxe
y
ν, T
3
μν=


2 exμezν, Tμν^4 =


2 e
y
μeνz, (17.20)

where theex,ey,ezare unit vectors parallel to the coordinate axes. In a principal
axes system, just the first two of these tensors occur, cf. Sect.15.2.1. The first three
of these tensors have the symmetry of the plane Couette geometry. In general, all 5
components are needed.
In matrix notation, the basis tensors (17.20) read



6 T^0 =



− 100

0 − 10

002


⎠,


2 T^1 =



100

0 − 10

000


⎠,


2 T^2 =



010

100

000


⎠,


2 T^3 =



001

000

100


⎠,


2 T^4 =



000

001

010


⎠. (17.21)

The basis tensors obey the ortho-normalization relation


Tμνi Tμνk =δik. (17.22)

The square of the alignment tensor is equal to the sum of its squared components, viz.


a^2 =aμνaμν=

∑^4

i= 0

a^2 i. (17.23)

Furthermore, as presented in [182], the symmetric traceless part of the product of
two of these tensors is explicitly given by



6 Tμλ^0 Tλν^0 =Tμν^0 ,


6 Tμλ^1 Tλν^1 =


6 Tμλ^2 Tλν^2 =−Tμν^0 , Tμλ^1 Tλν^2 = 0 ,

6 Tμλ^0 Tλν^1 =−Tμν^1 ,


6 Tμλ^0 Tλν^2 =−Tμν^2 ,


6 Tμλ^0 Tλν^3 =

1

2

Tμν^3 ,

6 Tμλ^0 Tλν^4 =

1

2

Tμν^4 ,


6 Tμλ^1 Tλν^3 =


6 Tμλ^2 Tλν^4 =

1

2


3 Tμν^3 ,

6 Tμλ^1 Tλν^4 =−

1

2


3 Tμν^4 ,


6 Tμλ^2 Tλν^3 =

1

2


3 Tμν^4 ,


6 Tμλ^3 Tλν^4 =

1

2


3 Tμν^2 ,

6 Tμλ^3 Tλν^3 =

1

2

(Tμν^0 +


3 Tμν^1 ),


6 Tμλ^4 Tλν^4 =

1

2

(Tμν^0 −


3 Tμν^1 ). (17.24)
Free download pdf