58 5 Symmetric Second Rank Tensors
5.2.4 Biaxial Tensors.
The general symmetric second rank tensor with three different principal values is
referred to asbiaxialtensor. With the abbreviations
S ̄=^1
3(
S(^1 )+S(^2 )+S(^3 ))
, s=S(^3 )−1
2(
S(^1 )+S(^2 ))
, q=1
2(
S(^1 )−S(^2 ))
,(5.11)the decomposition of the tensor according to (5.1), can be written as
Sμν=S ̄δμν+se(μ^3 )e(ν^3 )+q(
e(μ^1 )eν(^1 )−e(μ^2 )e(ν^2 ))
. (5.12)
To check the validity of this relation, notice thatS(i)=e(μi)Sμνe(νi)ande(μi)e
(j)
μe
(j)
ν e
(i)
μ
is equal to 2/3, fori=jand equal to− 1 /3, fori=j,cf.(3.27) and (3.28). Both,
iandj, can be equal to 1,2 or 3. The result is
S(^1 )=S ̄−
1
3
s+q, S(^2 )=S ̄−1
3
s−q, S(^3 )=S ̄+2
3
s. (5.13)Furthermore, notice thateμ(^1 )e(ν^1 )−e(μ^2 )e(ν^2 )=e(μ^1 )e(ν^1 )−eμ(^2 )e(ν^2 ). Alternatively, to
obtain (5.12), one may start from (5.4) and decompose the tensor into its isotropic
and anisotropic parts according to
S=
1
3
∑^3
i= 1S(i)δμν+∑^3
i= 1S(i)e(μi)e(νi).Since
S(^1 )eμ(^1 )e(ν^1 )+S(^2 )e(μ^2 )e(ν^2 )is equal to
1
2(
S(^1 )+S(^2 )
)(
eμ(^1 )e(ν^1 )+e(μ^2 )e(ν^2 ))
+
1
2
(
S(^1 )−S(^2 )
)(
eμ(^1 )e(ν^1 )−e(μ^2 )e(ν^2 ))
and
e(μ^1 )eν(^1 )+e(μ^2 )e(ν^2 )=−e(μ^3 )e(ν^3 ),equation (5.12) is recovered.