Mathematical Tools for Physics - Department of Physics - University

(nextflipdebug2) #1
14—Complex Variables 368

whereCis a circle of radiusπnabout the origin. Ans:− 4 πin


14.25 Evaluate the residues of these functions at their singularities. a,b, andcare distinct. Six


answers: you should be able to do five of them in your head.


(a)

1

(z−a)(z−b)(z−c)


(b)

1

(z−a)(z−b)^2


(c)

1

(z−a)^3


14.26 Evaluate the residue at the origin for the function


1

z


ez+


(^1) z
The result will be an infinite series, though if you want to express the answer in terms of a standard


function you will have to hunt. Ans:I 0 (2) = 2. 2796 , a modified Bessel function.


14.27 Evaluate


∫∞

0 dz/(a


(^4) +x (^4) ), and to check, compare it to the result of Eq. (14.15).
14.28 Show that ∫∞
0


dx


cosbx


a^2 +x^2


=

π


2 a


e−ab (a, b >0)


14.29 Evaluate (areal) ∫



−∞

dx


sin^2 ax


x^2


Ans:|a|π


14.30 Evaluate ∫∞


−∞

dx


sin^2 bx


x(a^2 +x^2 )


14.31 Evaluate the integral


∫∞

0 dx



x/(a+x)^2. Use the ideas of example 8, but without the logarithm.


(a > 0 ) Ans:π/ 2



a


14.32 Evaluate ∫∞


0

dx


lnx


a^2 +x^2


(What happens if you consider(lnx)^2 ?) Ans:(πlna)/ 2 a


14.33 Evaluate(λ >1)by contour integration


∫ 2 π

0


(

λ+ sinθ


) 2

Ans: 2 πλ/(λ^2 −1)^3 /^2


14.34 Evaluate ∫π


0

dθsin^2 nθ


Recall Eq. (2.19). Ans:π 2 nCn


/

22 n−^1 =π(2n−1)!!/(2n)!!

Free download pdf