280 Gravitational instability in Newtonian theory
These new coordinates can be used until the trajectories of the matter elements
start to cross one other. The velocity of a matter element with the given Lagrangian
coordinatesqis equal to
Vi≡
dxi
dt
=
∂xi(q,t)
∂t
∣
∣∣
∣
q
. (6.78)
The derivatives of the velocity field with respect to the Eulerian coordinates can
then be written as
∇jVi=
∂qk
∂xj
∂
∂qk
(
∂xi(q,t)
∂t
)
=
∂qk
∂xj
∂Jki
∂t
, (6.79)
where we have introduced the strain tensor
Jki(q,t)≡
∂xi(q,t)
∂qk
. (6.80)
Taking into account that
(
∂
∂t
∣
∣∣
∣
x
+Vi∇i
)
=
∂
∂t
∣
∣∣
∣
x
+
∂xi(q,t)
∂t
∣
∣∣
∣
q
∂
∂xi
=
∂
∂t
∣
∣∣
∣
q
, (6.81)
and substituting (6.79) into (6.75) and (6.76), we obtain
∂ε
∂t
+ε
∂qk
∂xi
∂Jki
∂t
= 0 , (6.82)
∂
∂t
(
∂qk
∂xi
∂Jki
∂t
)
+
(
∂qk
∂xi
∂Jkj
∂t
)(
∂ql
∂xj
∂Jli
∂t
)
+ 4 πGε= 0 , (6.83)
where the time derivatives are taken at constantq.The elements of the strain tensor
(6.80) form a 3×3 matrixJ≡
∥
∥Jki
∥
∥, and since
∂qk
∂xj
·
∂xi
∂qk
=
∂xi
∂xj
=δij, (6.84)
the derivatives∂qk/∂xiare the elements of the inverse matrixJ−^1 .Consequently,
we can rewrite (6.82) and (6.83) in matrix notation as
ε ̇+εtr
(
J ̇·J−^1
)
= 0 , (6.85)
[
tr
(
J ̇·J−^1
)]•
+tr
[(
J ̇·J−^1
) 2 ]
+ 4 πGε= 0 , (6.86)
where a dot denotes the partial time derivative.