9.10 Polarization of the cosmic microwave background 399
n
l
x
z
y
e
Fig. 9.5.
components of the electric field along vectoreaare
E ̃a=E ̃·ea=AE·ea. (9.142)
If incoming light arriving from directionlis completely unpolarized, then the
resulting polarization tensor can be calculated using (9.142) and averaging over all
directions ofEperpendicular tol.
Problem 9.20Show that in this case
〈 ̃
EaE ̃b
〉
=^12 A^2
〈
E^2
〉
(gab−(l·ea)(l·eb)), (9.143)
and
I=
〈 ̃
EaE ̃a
〉
=^12 A^2
〈
E^2
〉(
1 +(l·n)^2
)
, (9.144)
where
〈
E^2
〉
is the average of the squared electric field in the incident unpolarized
beam. (HintJustify and use the following formula for averaging over directions of
the electric field in the incident beam:
〈
EiEj
〉
=^12
〈
E^2
〉(
δij−lilj
)
, (9.145)
whereEi,li(i= 1 , 2 ,3) are the components of the appropriate 3-vectors in some
orthonormal basis.)
Write down the polarization tensor and verify that fa=(l·ea)is an eigenvector
ofPbawith negative eigenvalue. Show that the polarization vectorpais the vector
perpendicular tofawith norm
p^2 =
1 −(l·n)^2
1 +(l·n)^2