Physics and Engineering of Radiation Detection

(Martin Jones) #1

538 Chapter 9. Essential Statistics for Data Analysis


x


0 1020304050

f


0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18 μ=5.5

μ=10
μ=15

μ=30

μ=20

Figure 9.3.3: Poisson probabil-
ity density for different values of
μ. The width of the distribu-
tion, a reflection of the uncer-
tainty in the measurement, in-
creases with increase inμ.

The log likelihood function ofL(μ)is


l≡ln(L)=

(n

i=1

xi

)

ln(μ)−nμ−ln(x 1 !x 2 !...xn!). (9.3.33)

Following the maximum likelihood method (∂l/∂μ=0)weget



∂μ

[(n

i=1

xi

)

ln(μ)−nμ−ln(x 1 !x 2 !...xn!)

]

=0

1

μ∗

∑n

i=1

xi−n =0

μ∗ =

1

n

∑n

i=1

xi. (9.3.34)

This shows that the simple mean is the most probable value of a Poisson distributed
variable. To determine the error inμ, we fist take second derivative of the log
likelihood function and then substitute it in equation 9.3.22.


∂^2 l
∂μ^2

= −

1

μ^2

∑n

i=1

xi

μ =

[


∂^2 l
∂μ^2

]− 1 / 2

=

[

μ∗^2
∑n
i=1xi

] 1 / 2

=

1

n

[n

i=1

xi

] 1 / 2

(9.3.35)

This is one of the most useful results of the Poisson distribution. It implies that if
we make one measurement, the statistical error we should expect in it would simply

Free download pdf