538 Chapter 9. Essential Statistics for Data Analysis
x
0 1020304050
f
0
0.02
0.04
0.06
0.08
0.1
0.12
0.14
0.16
0.18 μ=5.5
μ=10
μ=15
μ=30
μ=20
Figure 9.3.3: Poisson probabil-
ity density for different values of
μ. The width of the distribu-
tion, a reflection of the uncer-
tainty in the measurement, in-
creases with increase inμ.
The log likelihood function ofL(μ)is
l≡ln(L)=
(n
∑
i=1
xi
)
ln(μ)−nμ−ln(x 1 !x 2 !...xn!). (9.3.33)
Following the maximum likelihood method (∂l/∂μ=0)weget
∂
∂μ
[(n
∑
i=1
xi
)
ln(μ)−nμ−ln(x 1 !x 2 !...xn!)
]
=0
1
μ∗
∑n
i=1
xi−n =0
μ∗ =
1
n
∑n
i=1
xi. (9.3.34)
This shows that the simple mean is the most probable value of a Poisson distributed
variable. To determine the error inμ, we fist take second derivative of the log
likelihood function and then substitute it in equation 9.3.22.
∂^2 l
∂μ^2
= −
1
μ^2
∑n
i=1
xi
μ =
[
−
∂^2 l
∂μ^2
]− 1 / 2
=
[
μ∗^2
∑n
i=1xi
] 1 / 2
=
1
n
[n
∑
i=1
xi
] 1 / 2
(9.3.35)
This is one of the most useful results of the Poisson distribution. It implies that if
we make one measurement, the statistical error we should expect in it would simply