540 Chapter 9. Essential Statistics for Data Analysis
x
0 5 10 15 20 25 30 35 40 45
f
0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
x
-4 -2 0 2 4
f
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
Figure 9.3.4: (a) Gaussian dis-
tribution forμ =25andσ =
- (b) Standard normal distri-
bution havingμ =0andσ = - With proper change of scale,
any Gaussian distribution can be
transformed into a standard nor-
mal distribution.
Taking the natural logarithm of both sides of this equation gives
ln(L)=
∑N
i=1
[
−
(xi−μ)^2
2 σ^2 i
−ln(σi)−
ln(2π)
2
]
. (9.3.40)
The maximum likelihood solution is then obtained by differentiating this equation
with respect toμand equating the result to zero. Hence we get
∂ln(L)
∂μ∗
=
∑N
i=1
xi−μ∗
σ^2 i
= 0 (9.3.41)
⇒
∑N
i=1
μ∗
σi^2
=
∑N
i=1
xi
σi^2
⇒μ∗ =
∑N
∑i=1wixi
N
i=1wi
, (9.3.42)
wherewi=1/σi^2. Hence the most probable value is simply the weighted mean with
respective inverse variances orerrorsas weights. If we assume that each measure-
ment has the same amount of uncertainty or error then usingσi=σthe maximum