Simulink Control Design™ - MathWorks

(Tuis.) #1
To analyze the airframe dynamics, trim the airframe for and. The trim
condition corresponds to zero normal acceleration and pitching moment ( and steady).
Use findop to compute the corresponding closed-loop operating condition. Note that we
added a "delta trim" input port so that findop can adjust the fin deflection to produce the
desired equilibrium of forces and moments.

opspec = operspec('rct_airframe1');

% Specify trim condition
% Xe,Ze: known, not steady
opspec.States(1).Known = [1;1];
opspec.States(1).SteadyState = [0;0];
% u,w: known, w steady
opspec.States(3).Known = [1 1];
opspec.States(3).SteadyState = [0 1];
% theta: known, not steady
opspec.States(2).Known = 1;
opspec.States(2).SteadyState = 0;
% q: unknown, steady
opspec.States(4).Known = 0;
opspec.States(4).SteadyState = 1;
% integrator states unknown, not steady
opspec.States(5).SteadyState = 0;
opspec.States(6).SteadyState = 0;

op = findop('rct_airframe1',opspec);

Operating point search report:
---------------------------------

Operating point search report for the Model rct_airframe1.
(Time-Varying Components Evaluated at time t=0)

Operating point specifications were successfully met.
States:
----------
(1.) rct_airframe1/Airframe Model/Aerodynamics & Equations of Motion/ Equations of Motion (Body Axes)/Position
x: 0 dx: 984
x: -3.05e+03 dx: 0
(2.) rct_airframe1/Airframe Model/Aerodynamics & Equations of Motion/ Equations of Motion (Body Axes)/Theta
x: 0 dx: -0.00972
(3.) rct_airframe1/Airframe Model/Aerodynamics & Equations of Motion/ Equations of Motion (Body Axes)/U,w
x: 984 dx: 22.7

13 Control System Tuning Examples

Free download pdf