Science - USA (2021-12-10)

(Antfer) #1
and blade morphogenesis, consistent with the
19th-century view of homology (Fig. 1K). Other
anatomical traits, such as venation patterns,
may represent further elaborations rather than
being primary indicators of homology. Our
findings are comparable to those from animal
evo-devo studies, in which a discarded hypoth-
esis, the notion that the ventral side of insects
corresponds to the dorsal sides of vertebrates,
was reinstated in the light of fresh develop-
mental genetic evidence ( 37 ). We further provide
a mechanistic link between the developmental
genes involved and their morphogenetic effects.

REFERENCESANDNOTES


  1. D. R. Kaplan,Q. Rev. Biol. 48 , 437–457 (1973).

  2. P. F. Stevens, Angiosperm phylogeny website, version 14
    (2017); http://www.mobot.org/MOBOT/research/APweb/.

  3. R. Johnston, S. Leiboff, M. J. Scanlon,New Phytol. 205 ,
    306 – 315 (2015).

  4. B. C. Sharman,Ann. Bot. (Lond.) 6 , 245–282 (1942).

  5. A. P. De Candolle,Organographie Végétale(Chez Deterville
    Libraire, 1827), vol. 1, book 2, pp. 285–288.

  6. A. M. Grey,“The leaves,”inThe Botanical Text-book: An Introduction
    to Scientific Botany(Putnam, ed. 3, 1850), pp. 140–179.

  7. A. Arber,Ann. Bot. (Lond.) 32 , 465–501 (1918).

  8. A. R. Arber,Monocotyledons: A Morphological Study
    (Cambridge Univ. Press, 1925).

  9. G. Henslow,Ann. Bot. 25 , 717–744 (1911).

  10. W. Troll,Chron. Bot. 5 , 38–41 (1939).

  11. F. Knoll,Österreichische. Bot. Z. 95 , 163–193 (1948).

  12. W. Hagemann,Bot. Jahrb. 90 , 297–413 (1970).

  13. D. R. Kaplan,Am. J. Bot. 57 , 331–361 (1970).

  14. A. W. Eichler,Zur Entwickelungsgeschichte des Blattes mit
    besonderer Berücksichtigung der Nebenblatt-Bildungen
    (Elwert’sche Universitäts-Buchhandlung, 1861).

  15. D. Jackson, B. Veit, S. Hake,Development 120 , 405–413 (1994).

  16. M. T. Juarez, R. W. Twigg, M. C. P. Timmermans,Development
    131 , 4533–4544 (2004).

  17. F. T. S. Nogueiraet al.,PLOS Genet. 5 , e1000320 (2009).

  18. A. Hay, S. Hake,Plant Physiol. 135 , 300–308 (2004).

  19. J. Nardmann, J. Ji, W. Werr, M. J. Scanlon,Development 131 ,
    2827 – 2839 (2004).

  20. M. J. Scanlon, R. G. Schneeberger, M. Freeling,Development
    122 , 1683–1691 (1996).

  21. M. J. Scanlon, M. Freeling,Dev. Biol. 182 , 52–66 (1997).

  22. C. D. Whitewoodset al.,Science 367 , 91–96 (2020).

  23. D. L. O’Connoret al.,PLOS Comput. Biol. 10 , e1003447 (2014).

  24. A. Richardson, A. B. Rebocho, E. Coen,Plant Cell 28 , 2079–2096 (2016).

  25. M.Aida,T.Ishida,M.Tasaka,Development 126 , 1563–1570 (1999).

  26. N. Matsumoto, K. Okada,Genes Dev. 15 , 3355–3364 (2001).

  27. M. Nakataet al.,Plant Cell 24 , 519–535 (2012).

  28. Z. Zhanget al.,Curr. Biol. 30 , 4857–4868.e6 (2020).

  29. M. E. Byrne,Curr. Opin. Plant Biol. 8 , 59–66 (2005).

  30. S. Foxet al.,PLOS Biol. 16 , e2005952 (2018).

  31. D. Kierzkowskiet al.,Cell 177 , 1405–1418.e17 (2019).

  32. Z. Donget al.,Proc. Natl. Acad. Sci. U.S.A. 114 , E8656–E8664 (2017).

  33. T. Toribaet al.,Nat. Commun. 10 , 619 (2019).

  34. M. Vandenbusscheet al.,Plant Cell 21 , 2269–2283 (2009).

  35. H. Linet al.,Proc. Natl. Acad. Sci. U.S.A. 110 , 366–371 (2013).

  36. J. I. Pueyo, J. P. Couso,Curr. Opin. Genet. Dev. 15 , 439–446 (2005).

  37. A. Richardsonet al., Computational model codes for: Evolution of the
    grass leaf by primordium extension and petiole-lamina remodeling,
    Zenodo (2021); https://doi.org/10.5281/zenodo.5555063.


ACKNOWLEDGMENTS
We thank D. O’Connor, members of the Coen laboratory,
C. Whitewoods, members of the Hake laboratory, S. Leiboff,
C. L. Shaw, and A. Hudson for support and helpful discussions;
T. Dao for help with the PI staining and tissue clearing method; and
the microscopy and greenhouse staff at the JIC and the USDA
and the Cornell Institute of Biotechnology’s Imaging Facility.
Funding:This work was supported by a bilateral NSF/BIO-BBSRC
grant (BB/M023117/1 to S.H. and E.C.); the BBSRC (grants
BBS/E/J/000PR9787, BBS/E/J/00000152, BB/L008920/1, and
BBS/E/J/000PR9789 to E.C.); and the NSF (grant DEB-1457070
to M.S.). H.K. received funding from the Chinese Academy of
Sciences (grants XDB27010304 and ZDBS-LY-SM022) for J.C. A.R.
is funded by University of Edinburgh start-up funds. The Cornell

1380 10 DECEMBER 2021¥VOL 374 ISSUE 6573 science.orgSCIENCE


Fig. 4. Eudicot leaf models.(A) PZ (dotted line) straddles the midplane (green line) between the abaxial
(orange) and adaxial (blue) domains. (B) PZ central (blue), lateral (light red), outer lateral (dark red), and marginal
(cyan) domains. (CtoK) Volumetric primordium emergence models. (C) and (D) are the wild type, (E) and (F) are
prs, (G) and (H) areprs wox1, and (I) to (K) are the abaxialized mutant. Blue arrows indicate proximodistal
polarity, asterisks the presumptive midvein tip, and“A”the apex. Arrowhead indicates the missing domains.
(LtoU) Tissue sheet models. Upper leaf domains are shown in orange and purple. (L) to (O) are the petiole-
sheath hypothesis. (P) to (S) are the petiole-leaf hypothesis. (N) and (R) SHEATH identity (dark gray overlay,
bracket) introduced at P4. In (T) and (U), theprs wox1mutant generates a narrow petiole base in the petiole-leaf
model (T) and a narrow leaf in the petiole-sheath model (U). Arrowhead indicates the missing domains. (V) is
ZmTRU1 immunolocalization on a maize vegetative shoot apex longitudinal section (n= 4). Arrowhead indicates
theligule.P1toP6aretheprimordiaplastochrons.Scalebar,100mm. Asterisk indicates presumptive midvein tip.


RESEARCH | REPORTS

Free download pdf