Science - USA (2021-12-10)

(Antfer) #1

closure, which was interpreted to indicate
that iNKT cells inhibit tissue repair ( 65 ). How-
ever, the recently described competition among
unconventional T cells could mean that pre-
vention of CD1d-mediated iNKT activation and
accumulation after injury may increase the
abundance of other unconventional T cells that
have been shown to promote wound healing,
including MAIT cells andgdT cells. Thus, it
remains to be determined whether iNKT cells
also participate in tissue repair.
Although T cells that recognizeN-formylated
peptides presented by the MHC-Ib molecule
H2-M3 display a diverse TCR repertoire ( 66 ),
they exhibit innate-like effector characteristics
and have recently been shown to promote tis-
sue repair ( 67 – 69 ). After topical application of
S. epidermidis, H2-M3–restricted RORgt+CD8+
T cells preferentially accumulate in the epider-
mis, where they express immunoregulatory
and tissue repair transcriptional signatures
( 60 , 68 ). The transcriptional program of the
H2-M3–restricted RORgt+CD8+T cells closely
resembles that of MAIT cells after the resolu-
tion of aLegionellainfection, which also dis-
play tissue repair genes ( 31 ). Conversely, after
an inflammatory intradermal inoculation of
S. epidermidis, H2-M3–restricted T-bet+CD8+
T cells result ( 60 , 69 ), which lack the immu-
noregulatory and tissue repair characteristics
of the RORgt+cells ( 68 ). Because homeostatic
interactions with the microbiota are necessary
for the induction of a tissue repair signature
in H2-M3–restricted T cells, robust cytokine-
mediated activation likely induces effector
characteristics analogously to MAIT cells ( 32 ).
After a cutaneous injury, H2-M3–restricted
RORgt+CD8+T cells accumulate at the wound
edge, where damage-associated alarmins, and
in particular IL-18, promote their production
of type 2 cytokines, which contribute to the
re-epithelialization of the wound and thus
restore tissue homeostasis ( 68 , 69 ).
Growing evidence indicates that the role of
unconventional T cells is highly dependent on
their tissue localization, host developmental
stage, and disease context. Indeed, although
the ability of unconventional T cells to promote
epithelial growth and angiogenesis is beneficial
in the context of tissue repair, these functions
can also exacerbate tumorigenesis. For in-
stance, the production of IL-17 by lung-resident
Vg 6 +Vd 1 +T cells in response to the local mi-
crobiota promotes neutrophil infiltration into
lung adenocarcinomas and increases tumor
development ( 70 ). Conversely,gdT cells and
other unconventional T cells also exhibit anti-
tumor responses ( 71 ). MAIT cells were recently
shown to target myeloma cells pulsed with
the riboflavin derivative 5-OP-RU, and an
MR1-restricted T cell clone from human pe-
ripheral blood was found to kill a broad range
of cancer cells ( 72 , 73 ). Microbiota-mediated
conversion of bile acids regulates the accumu-


lation of iNKT cells in the liver, which inhibit
hepatic tumor growth ( 74 ). Furthermore, un-
conventional T cells make attractive targets
for chimeric antigen receptor T cell therapy
because their restriction by monomorphic
MHC-Ib molecules avoids the possibility of
graft-versus-host disease ( 71 ).
Because of the complexity and interrelated
functions of unconventional T cells, this evo-
lutionarily ancient arm of the immune system
is expected to contribute extensively to the
control of both host physiology and disease
states. As such, leveraging the ability of these
tissue-resident cells to rapidly respond to ca-
nonical antigens, alarmins, and/or common
survival factors may represent an important
and highly physiological therapeutic strategy.

REFERENCESANDNOTES


  1. L. C. Rankin, D. Artis, Beyond Host Defense: Emerging
    Functions of the Immune System in Regulating Complex Tissue
    Physiology.Cell 173 , 554–567 (2018). doi:10.1016/
    j.cell.2018.03.013; pmid: 29677509

  2. D. I. Godfrey, A. P. Uldrich, J. McCluskey, J. Rossjohn,
    D. B. Moody, The burgeoning family of unconventional T cells.
    Nat. Immunol. 16 , 1114–1123 (2015). doi:10.1038/ni.3298;
    pmid: 26482978

  3. D. Anet al., Sphingolipids from a symbiotic microbe regulate
    homeostasis of host intestinal natural killer T cells.Cell 156 ,
    123 – 133 (2014). doi:10.1016/j.cell.2013.11.042; pmid: 24439373

  4. M. G. Constantinideset al., MAIT cells are imprinted by the
    microbiota in early life and promote tissue repair.Science 366 ,
    eaax6624 (2019). doi:10.1126/science.aax6624;
    pmid: 31649166

  5. E. Leeansyah, L. Loh, D. F. Nixon, J. K. Sandberg, Acquisition of
    innate-like microbial reactivity in mucosal tissues during
    human fetal MAIT-cell development.Nat. Commun. 5 , 3143
    (2014). doi:10.1038/ncomms4143; pmid: 24452018

  6. J. D. Haaset al., Development of interleukin-17-producinggd
    T cells is restricted to a functional embryonic wave.Immunity
    37 , 48–59 (2012). doi:10.1016/j.immuni.2012.06.003;
    pmid: 22770884

  7. K. Narayanet al., Intrathymic programming of effector fates in
    three molecularly distinctgdT cell subtypes.Nat. Immunol. 13 ,
    511 – 518 (2012). doi:10.1038/ni.2247; pmid: 22473038

  8. P. Tieppoet al., The human fetal thymus generates invariant
    effectorgdT cells.J. Exp. Med. 217 , e20190580 (2020).
    doi:10.1084/jem.20190580; pmid: 31816633

  9. M. G. Constantinides, A. Bendelac, Transcriptional regulation of
    the NKT cell lineage.Curr. Opin. Immunol. 25 , 161–167 (2013).
    doi:10.1016/j.coi.2013.01.003; pmid: 23402834

  10. A. Bendelac, P. B. Savage, L. Teyton, The biology of NKT cells.
    Annu. Rev. Immunol. 25 , 297–336 (2007). doi:10.1146/
    annurev.immunol.25.022106.141711; pmid: 17150027

  11. B. Weiet al., Commensal microbiota and CD8+ T cells shape
    the formation of invariant NKT cells.J. Immunol. 184 ,
    1218 – 1226 (2010). doi:10.4049/jimmunol.0902620;
    pmid: 20048124

  12. G. Wingenderet al., Intestinal microbes affect phenotypes and
    functions of invariant natural killer T cells in mice.
    Gastroenterology 143 , 418–428 (2012). doi:10.1053/
    j.gastro.2012.04.017; pmid: 22522092

  13. T. Olszaket al., Microbial exposure during early life has
    persistent effects on natural killer T cell function.Science 336 ,
    489 – 493 (2012). doi:10.1126/science.1219328;
    pmid: 22442383

  14. M. G. Constantinides, B. D. McDonald, P. A. Verhoef,
    A. Bendelac, A committed precursor to innate lymphoid cells.
    Nature 508 , 397–401 (2014). doi:10.1038/nature13047;
    pmid: 24509713

  15. A. K. Savageet al., The transcription factor PLZF directs the
    effector program of the NKT cell lineage.Immunity 29 ,
    391 – 403 (2008). doi:10.1016/j.immuni.2008.07.011;
    pmid: 18703361

  16. M. Ennamoratiet al., Intestinal microbes influence
    development of thymic lymphocytes in early life.Proc. Natl.
    Acad. Sci. U.S.A. 117 , 2570–2578 (2020). doi:10.1073/
    pnas.1915047117; pmid: 31964813
    17. M. G. Constantinides, Interactions between the microbiota and
    innate and innate-like lymphocytes.J. Leukoc. Biol. 103 ,
    409 – 419 (2018). doi:10.1002/JLB.3RI0917-378R;
    pmid: 29345366
    18. L. Le Bourhiset al., Antimicrobial activity of mucosal-
    associated invariant T cells.Nat. Immunol. 11 , 701–708 (2010).
    doi:10.1038/ni.1890; pmid: 20581831
    19. G. Ben Youssefet al., Ontogeny of human mucosal-associated
    invariant T cells and related T cell subsets.J. Exp. Med.
    215 , 459–479 (2018). doi:10.1084/jem.20171739;
    pmid: 29339446
    20. P. Chenet al., Circulating Mucosal-Associated Invariant T Cells
    in a Large Cohort of Healthy Chinese Individuals From
    Newborn to Elderly.Front. Immunol. 10 , 260 (2019).
    doi:10.3389/fimmu.2019.00260; pmid: 30838000
    21. F. Legouxet al., Microbial metabolites control the thymic
    development of mucosal-associated invariant T cells.Science
    366 , 494–499 (2019). doi:10.1126/science.aaw2719;
    pmid: 31467190
    22. H. F. Koayet al., A three-stage intrathymic development
    pathway for the mucosal-associated invariant T cell lineage.
    Nat. Immunol. 17 , 1300–1311 (2016). doi:10.1038/ni.3565;
    pmid: 27668799
    23. E. Treineret al., Selection of evolutionarily conserved mucosal-
    associated invariant T cells by MR1.Nature 422 , 164– 169
    (2003). doi:10.1038/nature01433; pmid: 12634786
    24. M. G. Rooks, W. S. Garrett, Gut microbiota, metabolites and
    host immunity.Nat. Rev. Immunol. 16 , 341–352 (2016).
    doi:10.1038/nri.2016.42; pmid: 27231050
    25. M. C. Arrieta, L. T. Stiemsma, N. Amenyogbe, E. M. Brown,
    B. Finlay, The intestinal microbiome in early life: Health and
    disease.Front. Immunol. 5 , 427 (2014). doi:10.3389/
    fimmu.2014.00427; pmid: 25250028
    26. J. L. Combellicket al., Differences in the fecal microbiota of
    neonates born at home or in the hospital.Sci. Rep. 8 , 15660
    (2018). doi:10.1038/s41598-018-33995-7; pmid: 30353125
    27. D. M. Chuet al., Maturation of the infant microbiome
    community structure and function across multiple body sites
    and in relation to mode of delivery.Nat. Med. 23 , 314– 326
    (2017). doi:10.1038/nm.4272; pmid: 28112736
    28. O. Korenet al., Host remodeling of the gut microbiome and
    metabolic changes during pregnancy.Cell 150 , 470– 480
    (2012). doi:10.1016/j.cell.2012.07.008; pmid: 22863002
    29. M. J. Harriffet al., MR1 displays the microbial metabolome
    driving selective MR1-restricted T cell receptor usage.Sci.
    Immunol. 3 , eaao2556 (2018). doi:10.1126/sciimmunol.
    aao2556; pmid: 30006464
    30. A. N. Kelleret al., Drugs and drug-like molecules can modulate
    the function of mucosal-associated invariant T cells.Nat.
    Immunol. 18 , 402–411 (2017). doi:10.1038/ni.3679;
    pmid: 28166217
    31. T. S. C. Hinkset al., Activation and In Vivo Evolution of the
    MAIT Cell Transcriptome in Mice and Humans Reveals Tissue
    Repair Functionality.Cell Rep. 28 , 3249–3262.e5 (2019).
    doi:10.1016/j.celrep.2019.07.039; pmid: 31533045
    32. T. Lenget al., TCR and Inflammatory Signals Tune Human
    MAIT Cells to Exert Specific Tissue Repair and Effector
    Functions.Cell Rep. 28 , 3077–3091.e5 (2019). doi:10.1016/
    j.celrep.2019.08.050; pmid: 31533032
    33. H. Wanget al., MAIT cells protect against pulmonary Legionella
    longbeachae infection.Nat. Commun. 9 , 3350 (2018).
    doi:10.1038/s41467-018-05202-8; pmid: 30135490
    34. B. van Wilgenburget al., MAIT cells contribute to protection
    against lethal influenza infection in vivo.Nat. Commun. 9 , 4706
    (2018). doi:10.1038/s41467-018-07207-9; pmid: 30413689
    35. P. Zanvitet al., Antibiotics in neonatal life increase murine
    susceptibility to experimental psoriasis.Nat. Commun. 6 , 8424
    (2015). doi:10.1038/ncomms9424; pmid: 26416167
    36. J. S. Heilig, S. Tonegawa, Diversity of murineggenes and
    expression in fetal and adult T lymphocytes.Nature 322 ,
    836 – 840 (1986). doi:10.1038/322836a0; pmid: 2943999
    37. S. Tamburini, N. Shen, H. C. Wu, J. C. Clemente, The
    microbiome in early life: Implications for health outcomes.
    Nat. Med. 22 , 713–722 (2016). doi:10.1038/nm.4142;
    pmid: 27387886
    38. R. Di Marco Barroset al., Epithelia Use Butyrophilin-like
    Molecules to Shape Organ-SpecificgdT Cell Compartments.
    Cell 167 , 203–218.e17 (2016). doi:10.1016/j.cell.2016.08.030;
    pmid: 27641500
    39. M. Gutierrez-Arceluset al., Lymphocyte innateness defined by
    transcriptional states reflects a balance between proliferation
    and effector functions.Nat. Commun. 10 , 687 (2019).
    doi:10.1038/s41467-019-08604-4; pmid: 30737409


Constantinides and Belkaid,Science 374 , eabf0095 (2021) 10 December 2021 5of6


RESEARCH | REVIEW

Free download pdf