Science - USA (2021-12-10)

(Antfer) #1

  1. I. Goliand, D. Nachmias, O. Gershony, N. Elia, Inhibition of
    ESCRT-II-CHMP6 interactions impedes cytokinetic abscission
    and leads to cell death.Mol. Biol. Cell 25 , 3740–3748 (2014).
    doi:10.1091/mbc.e14-08-1317; pmid: 25232011

  2. C. Addiet al., The Flemmingsome reveals an ESCRT-to-
    membrane coupling via ALIX/syntenin/syndecan-4 required
    for completion of cytokinesis.Nat. Commun. 11 , 1941 (2020).
    doi:10.1038/s41467-020-15205-z; pmid: 32321914

  3. J. H. Hurley, The ESCRT complexes.Crit. Rev. Biochem. Mol.
    Biol. 45 , 463–487 (2010). doi:10.3109/
    10409238.2010.502516; pmid: 20653365

  4. H. Teoet al., ESCRT-I core and ESCRT-II GLUE domain structures
    reveal role for GLUE in linking to ESCRT-I and membranes.Cell 125 ,
    99 – 111 (2006). doi:10.1016/j.cell.2006.01.047; pmid: 16615893

  5. Y. J. Im, J. H. Hurley, Integrated structural model and membrane
    targeting mechanism of the human ESCRT-II complex.Dev. Cell
    14 , 902–913 (2008). doi:10.1016/j.devcel.2008.04.004;
    pmid: 18539118

  6. P. G. Sreekumar, D. R. Hinton, R. Kannan, The emerging role of
    senescence in ocular disease.Oxid. Med. Cell. Longev. 2020 ,
    2583601 (2020). doi:10.1155/2020/2583601; pmid: 32215170

  7. M. Matsuyamaet al., Defect of mitotic vimentin
    phosphorylation causes microophthalmia and cataract via
    aneuploidy and senescence in lens epithelial cells.
    J. Biol. Chem. 288 , 35626–35635 (2013). doi:10.1074/
    jbc.M113.514737; pmid: 24142690

  8. Y. Zhou, T. M. Bennett, A. Shiels, A charged multivesicular
    body protein (CHMP4B) is required for lens growth and
    differentiation.Differentiation 109 , 16–27 (2019). doi:10.1016/
    j.diff.2019.07.003; pmid: 31404815

  9. C. Rodgeret al., De novo VPS4A mutations cause multisystem
    disease with abnormal neurodevelopment.Am. J. Hum. Genet.
    107 , 1129–1148 (2020). doi:10.1016/j.ajhg.2020.10.012;
    pmid: 33186545

  10. K. G. Seuet al., VPS4A mutations in humans cause syndromic
    congenital dyserythropoietic anemia due to cytokinesis and
    trafficking defects.Am. J. Hum. Genet. 107 , 1149–1156 (2020).
    doi:10.1016/j.ajhg.2020.10.013; pmid: 33186543

  11. D. Tiosanoet al., Mutations in PIK3C2A cause syndromic short
    stature, skeletal abnormalities, and cataracts associated with
    ciliary dysfunction.PLOS Genet. 15 , e1008088 (2019).
    doi:10.1371/journal.pgen.1008088; pmid: 31034465

  12. V. Gorgouliset al., Cellular senescence: Defining a path
    forward.Cell 179 , 813–827 (2019). doi:10.1016/
    j.cell.2019.10.005; pmid: 31675495

  13. F. Gulluni, M. C. De Santis, J. P. Margaria, M. Martini, E. Hirsch,
    Class II PI3K functions in cell biology and disease.Trends Cell
    Biol. 29 , 339–359 (2019). doi:10.1016/j.tcb.2019.01.001;
    pmid: 30691999

  14. D. P. Harriset al., Requirement for class II phosphoinositide
    3-kinase C2ain maintenance of glomerular structure and
    function.Mol. Cell. Biol. 31 , 63–80 (2011). doi:10.1128/
    MCB.00468-10; pmid: 20974805

  15. J. D. Rhodeset al., Activation of the innate immune response
    and interferon signalling in myotonic dystrophy type 1 and
    type 2 cataracts.Hum. Mol. Genet. 21 , 852–862 (2012).
    doi:10.1093/hmg/ddr515; pmid: 22062891

  16. E. Moritaet al., Human ESCRT and ALIX proteins interact with
    proteins of the midbody and function in cytokinesis.EMBO J.
    26 , 4215–4227 (2007). doi:10.1038/sj.emboj.7601850;
    pmid: 17853893

  17. S. Tcherniuket al., Relocation of Aurora B and survivin from
    centromeres to the central spindle impaired by a kinesin-specific
    MKLP-2 inhibitor.Angew. Chem. Int. Ed. 49 , 8228–8231 (2010).
    doi:10.1002/anie.201003254; pmid: 20857469

  18. J. A. Brill, R. Wong, A. Wilde, Phosphoinositide function in
    cytokinesis.Curr. Biol. 21 , R930–R934 (2011). doi:10.1016/
    j.cub.2011.10.001; pmid: 22115464

  19. H. Wanget al., Autoregulation of class IIaPI3K activity by its
    lipid-binding PX-C2 domain module.Mol. Cell 71 , 343–351.e4
    (2018). doi:10.1016/j.molcel.2018.06.042; pmid: 30029007

  20. G. D. Guptaet al., A dynamic protein interaction landscape
    of the human centrosome-cilium interface.Cell 163 ,


1484 – 1499 (2015). doi:10.1016/j.cell.2015.10.065;
pmid: 26638075


  1. M. L. Fanarraga, J. Bellido, C. Jaén, J. C. Villegas, J. C. Zabala,
    TBCD links centriologenesis, spindle microtubule dynamics,
    and midbody abscission in human cells.PLOS ONE 5 , e8846
    (2010). doi:10.1371/journal.pone.0008846; pmid: 20107510

  2. F. Gulluniet al., Mitotic spindle assembly and genomic stability
    in breast cancer require PI3K-C2ascaffolding function.Cancer
    Cell 32 , 444–459.e7 (2017). doi:10.1016/j.ccell.2017.09.002;
    pmid: 29017056

  3. A. P. Sagonaet al., PtdIns(3)P controls cytokinesis through
    KIF13A-mediated recruitment of FYVE-CENT to the midbody.
    Nat. Cell Biol. 12 , 362–371 (2010). doi:10.1038/ncb2036;
    pmid: 20208530

  4. Y. Posoret al., Spatiotemporal control of endocytosis by
    phosphatidylinositol-3,4-bisphosphate.Nature 499 , 233– 237
    (2013). doi:10.1038/nature12360; pmid: 23823722

  5. T. Balla, Phosphoinositides: Tiny lipids with giant impact on cell
    regulation.Physiol. Rev. 93 , 1019–1137 (2013). doi:10.1152/
    physrev.00028.2012; pmid: 23899561

  6. I. Francoet al., PI3K class IIacontrols spatially restricted
    endosomal PtdIns3P and Rab11 activation to promote primary
    cilium function.Dev. Cell 28 , 647–658 (2014). doi:10.1016/
    j.devcel.2014.01.022; pmid: 24697898

  7. S. L. Alamet al., Structural basis for ubiquitin recognition by the
    human ESCRT-II EAP45 GLUE domain.Nat. Struct. Mol. Biol. 13 ,
    1029 – 1030 (2006). doi:10.1038/nsmb1160; pmid: 17057716

  8. S. Hiranoet al., Structural basis of ubiquitin recognition by
    mammalian Eap45 GLUE domain.Nat. Struct. Mol. Biol. 13 ,
    1031 – 1032 (2006). doi:10.1038/nsmb1163; pmid: 17057714

  9. N. Elia, G. Fabrikant, M. M. Kozlov, J. Lippincott-Schwartz,
    Computational model of cytokinetic abscission driven by
    ESCRT-III polymerization and remodeling.Biophys. J. 102 ,
    2309 – 2320 (2012). doi:10.1016/j.bpj.2012.04.007;
    pmid: 22677384

  10. B. Mierzwa, D. W. Gerlich, Cytokinetic abscission: Molecular
    mechanisms and temporal control.Dev. Cell 31 , 525– 538
    (2014). doi:10.1016/j.devcel.2014.11.006; pmid: 25490264

  11. J. A. Schielet al., FIP3-endosome-dependent formation
    of the secondary ingression mediates ESCRT-III recruitment
    during cytokinesis.Nat. Cell Biol. 14 , 1068–1078 (2012).
    doi:10.1038/ncb2577; pmid: 23000966

  12. R. A. Avelaret al., A multidimensional systems biology analysis
    of cellular senescence in aging and disease.Genome Biol. 21 ,
    91 (2020). doi:10.1186/s13059-020-01990-9; pmid: 32264951

  13. M. A. De Matteis, L. Staiano, F. Emma, O. Devuyst, The
    5-phosphatase OCRL in Lowe syndrome and Dent disease 2.
    Nat. Rev. Nephrol. 13 , 455–470 (2017). doi:10.1038/
    nrneph.2017.83; pmid: 28669993

  14. M. Wiessneret al., Mutations in INPP5K, encoding a
    phosphoinositide 5-phosphatase, cause congenital muscular
    dystrophy with cataracts and mild cognitive impairment.
    Am. J. Hum. Genet. 100 , 523–536 (2017). doi:10.1016/
    j.ajhg.2017.01.024; pmid: 28190456

  15. C. Cauvin, A. Echard, Phosphoinositides: Lipids with
    informative heads and mastermind functions in cell division.
    Biochim. Biophys. Acta 1851 , 832–843 (2015). doi:10.1016/
    j.bbalip.2014.10.013; pmid: 25449648

  16. A. P. Sagona, I. P. Nezis, H. Stenmark, Association of CHMP4B
    and autophagy with micronuclei: Implications for cataract
    formation.BioMed Res. Int. 2014 , 974393 (2014). doi:10.1155/
    2014/974393; pmid: 24741567

  17. V. Alfred, T. Vaccari, When membranes need an ESCRT:
    Endosomal sorting and membrane remodelling in health and
    disease.Swiss Med. Wkly. 146 , w14347 (2016). doi:10.4414/
    smw.2016.14347; pmid: 27631343

  18. H. Goto, M. Inagaki, New insights into roles of intermediate
    filament phosphorylation and progeria pathogenesis.IUBMB Life
    66 , 195–200 (2014). doi:10.1002/iub.1260; pmid: 24659572

  19. A. Panopouloset al., Failure of cell cleavage induces
    senescence in tetraploid primary cells.Mol. Biol. Cell 25 ,
    3105 – 3118 (2014). doi:10.1091/mbc.e14-03-0844;
    pmid: 25143403
    49. N. Bojjireddyet al., Pharmacological and genetic targeting of
    the PI4KA enzyme reveals its important role in maintaining
    plasma membrane phosphatidylinositol 4-phosphate and
    phosphatidylinositol 4,5-bisphosphate levels.J. Biol. Chem.
    289 , 6120–6132 (2014). doi:10.1074/jbc.M113.531426;
    pmid: 24415756
    50. S. B. Thoresenet al., ANCHR mediates aurora-B-dependent
    abscission checkpoint control through retention of VPS4.
    Nat. Cell Biol. 16 , 550–560 (2014). doi:10.1038/ncb2959;
    pmid: 24814515
    51. L. Capalboet al., The midbody interactome reveals
    unexpected roles for PP1 phosphatases in cytokinesis.
    Nat. Commun. 10 , 4513 (2019). doi:10.1038/
    s41467-019-12507-9; pmid: 31586073
    52. A. R. Skop, H. Liu, J. Yates 3rd, B. J. Meyer, R. Heald,
    Dissection of the mammalian midbody proteome reveals
    conserved cytokinesis mechanisms.Science 305 , 61– 66
    (2004). doi:10.1126/science.1097931; pmid: 15166316
    53. R. N. Kettleboroughet al., A systematic genome-wide analysis
    of zebrafish protein-coding gene function.Nature 496 ,
    494 – 497 (2013). doi:10.1038/nature11992; pmid: 23594742
    54. A. Roy, A. Kucukural, Y. Zhang, I-TASSER: A unified platform
    for automated protein structure and function prediction.
    Nat. Protoc. 5 , 725–738 (2010). doi:10.1038/nprot.2010.5;
    pmid: 20360767
    55. L. M. Rice, E. A. Montabana, D. A. Agard, The lattice as
    allosteric effector: Structural studies of alphabeta- and
    g-tubulin clarify the role of GTP in microtubule assembly.
    Proc. Natl. Acad. Sci. U.S.A. 105 , 5378–5383 (2008).
    doi:10.1073/pnas.0801155105; pmid: 18388201


ACKNOWLEDGMENTS
We acknowledge M. Gai and the Open Lab of Advance Microscopy
(OLMA@MBC) for technical assistance.Funding:This work was
supported by Associazione Italiana Ricerca Cancro (AIRC; 21875 to
E.H.), Leducq Foundation (19CVD02 to E.H.), PRIN (20177E9EPY
to E.H.), Fondazione Ricerca Molinette (to E.H.), Fondazione
Pezcoller-SIC“Patrizia Coser”(to F.G.), Fondazione Italiana per la
Ricerca sul Cancro (FIRC 22558 to J.P.M. and FIRC 22248 to
M.C.D.S.), Deutsche Forschungsgemeinschaft (DFG) (TRR186/
A08 to V.H. and SCHU 3314/1-1 to M.S.), NeuroCure Cluster of
Excellence (Charité Universitätsmedizin Berlin, 10117 Berlin,
Germany to V.H.), National Institute of Diabetes and Digestive
and Kidney Diseases (DK119305 to D.A.B.), and Sigma Xi research
foundation (to A.C.).Author contributions:F.G. designed and
performed research, analyzed data, and wrote the manuscript;
L.P., H.L., I.C., S.J.C., A.M., P.K., A.C., J.F., A.Y., W.-T.L., N.T.S.,
M.C.D.S, and J.P.M. performed research and analyzed data; O.V.,
D.R.P., H.N.B., D.T., R.L.W., M.T., T.B., B.M.D., M.S., M.S.W.,
A.G., M.M., B.D.P., V.H, E.B, G.R.M., and D.A.B. provided critical
reagents and supervised the work; E.H. designed the research,
supervised the work and wrote the manuscript.Competing
interests:E.H. and A.G. are cofounder and board member
of Kither Biotech, a pharmaceutical product company developing
PI3K inhibitors for the treatment of respiratory diseases not in
conflict with statements made in this article. The other authors
declare no conflict of interest.Data and materials availability:All
data are available in the manuscript or the supplementary materials.
PITCOIN1 is subject to a European patent application (application
no. PCT/EP2019/065009), and its distribution is dependent on
completion of a materials transfer agreement with the FMP.
SUPPLEMENTARY MATERIALS
science.org/doi/10.1126/science.abk0410
Figs. S1 to S20
Tables S1 to S3
MDAR Reproducibility Checklist
Movies S1 to S7

17 June 2021; accepted 26 October 2021
10.1126/science.abk0410

Gulluniet al.,Science 374 , eabk0410 (2021) 10 December 2021 14 of 14


RESEARCH | RESEARCH ARTICLE

Free download pdf