13 Optical Processes
In chapter 10.1 (Linear Response Thoery) we derived the Kramers-Kronig relations. The Kramers-
Kronig relations relate the real component (χ′) of a generalized susceptibility to the imaginary com-
ponent (χ′′):
χ′′(ω) =
1
π
∫∞
−∞
χ′(ω′)
ω′−ω
dω′ (209)
χ′(ω) = −
1
π
∫∞
−∞
χ′′(ω′)
ω′−ω
dω′ (210)
The characteristics of the two parts of the generalized susceptibility parts are:
χ′(ω) = χ′(−ω)
χ′′(ω) = −χ′′(−ω)
This form (eqn. (209) and (210)) of the Kramers-Kronig relations should be used for mathematical
calculations. For experimental data the second form of the Kramers-Kronig relation should be used
(eqn. (211) and eqn. (212)). Now it is possible to transform the first form of the Kramers-Kronig
relation into the second:
First step is to split the integral and change the sign ofω:
=⇒
χ′(ω) = −
1
π
∫ 0
−∞
χ′′(ω′)
ω′−ω
dω′−
1
π
∫∞
0
χ′′(ω′)
ω′−ω
dω′
=⇒
χ′(ω) = −
1
π
∫∞
0
χ′′(ω′)
ω′+ω
dω′−
1
π
∫∞
0
χ′′(ω′)
ω′−ω
dω′
With the relationship
1
ω′+ω
+
1
ω′−ω
=
2 ω′
ω′^2 −ω^2
the second form of the Kramers-Kronig relation is derived:
χ′(ω) =
2
π
P
∫∞
0
ω′χ′′(ω′)
ω′^2 −ω^2
dω′ (211)
χ′′(ω) = −
2 ω
π
P
∫∞
0
χ′(ω′)
ω′^2 −ω^2
dω′ (212)