- 1 What is Solid State Physics
- 2 Schrödinger Equation
- 3 Quantization
- 3.1 Quantization
- 3.1.1 Quantization of the Harmonic Oscillator
- 3.1.2 Quantization of the Magnetic Flux
- 3.1.3 Quantisation of a charged particle in a magnetic field (with spin)
- 3.1.4 Dissipation
- 3.1 Quantization
- 4 Quantization of the Electromagnetic Field - Quantization Recipe
- 4.1 Thermodynamic Quantities
- 4.1.1 Recipe for the Quantization of Fields
- 4.1 Thermodynamic Quantities
- 5 Photonic Crystals
- 5.1 Intruduction: Plane Waves in Crystals
- 5.2 Empty Lattice Approximation (Photons)
- 5.3 Central Equations
- 5.4 Estimate the Size of the Photonic Bandgap
- 5.5 Density of States
- 5.6 Photon Density of States
- 6 Phonons
- 6.1 Linear Chain
- 6.2 Simple Cubic
- 6.2.1 Raman Spectroscopy
- 7 Electrons
- 7.1 Free Electron Fermi Gas
- 7.1.1 Fermi Energy
- 7.1.2 Chemical Potential
- 7.1.3 Sommerfeld Expansion
- 7.1.4 ARPES
- 7.2 Electronic Band Structure Calculations
- 7.2.1 Empty Lattice Approximation
- 7.2.2 Plane Wave Method - Central Equations
- 7.2.3 Tight Binding Model
- 7.2.4 Graphene
- 7.2.5 Carbon nanotubes
- 7.3 Bandstructure of Metals and Semiconductors
- 7.4 Direct and Indirect Bandgaps
- 7.1 Free Electron Fermi Gas
- 8 Crystal Physics
- 8.1 Stress and Strain
- 8.2 Statistical Physics
- 8.3 Crystal Symmetries
- 8.4 Example - Birefringence
- 9 Magnetism and Response to Electric and Magnetic Fields
- 9.1 Introduction: Electric and Magnetic Fields
- 9.2 Magnetic Fields
- 9.3 Magnetic Response of Atoms and Molecules
- 9.3.1 Diamagnetic Response
- 9.3.2 Paramagnetic Response
- 9.4 Free Particles in a Weak Magnetic Field
- 9.5 Ferromagnetism
- 10 Transport Regimes
- 10.1 Linear Response Theory
- 10.2 Ballistic Transport
- 10.3 Drift-Diffusion
- 10.4 Diffusive and Ballistic Transport
- 10.5 Skin depth
- 11 Quasiparticles
- 11.1 Fermi Liquid Theory
- 11.2 Particle like Quasiparticles
- 11.2.1 Electrons and Holes
- 11.2.2 Bogoliubov Quasiparticles
- 11.2.3 Polarons
- 11.2.4 Bipolarons
- 11.2.5 Mott Wannier Excitons
- 11.3 Collective modes
- 11.3.1 Phonons
- 11.3.2 Polaritons
- 11.3.3 Magnons
- 11.3.4 Plasmons
- 11.3.5 Surface Plasmons
- 11.3.6 Frenkel Excitations
- 11.4 Translational Symmetry
- 11.5 Occupation
- 11.6 Experimental techniques
- 11.6.1 Raman Spectroscopy
- 11.6.2 EELS
- 11.6.3 Inelastic Scattering
- 11.6.4 Photoemission
- 12 Electron-electron interactions, Quantum electronics
- 12.1 Electron Screening
- 12.2 Single electron effects
- 12.2.1 Tunnel Junctions
- 12.2.2 Single Electron Transistor
- 12.3 Electronic phase transitions
- 12.3.1 Mott Transition
- 12.3.2 Peierls Transition
- 13 Optical Processes
- 13.1 Optical Properties of Materials
- 13.1.1 Dielectric Response of Insulators
- 13.1.2 Inter- and Intraband Transition
- 13.2 Collisionless Metal
- 13.3 Diffusive Metals
- 13.3.1 Dielectric Function
- 13.1 Optical Properties of Materials
- 14 Dielectrics and Ferroelectrics
- 14.1 Excitons
- 14.1.1 Introduction
- 14.1.2 Mott Wannier Excitons
- 14.1.3 Frenkel excitons
- 14.2 Optical measurements
- 14.2.1 Introduction
- 14.2.2 Ellipsometry
- 14.2.3 Reflection electron energy loss spectroscopy
- 14.2.4 Photo emission spectroscopy
- 14.2.5 Raman spectroscopy
- 14.3 Dielectrics
- 14.3.1 Introduction
- 14.3.2 Polarizability
- 14.4 Structural phase transitions
- 14.4.1 Introduction
- 14.4.2 Example: Tin
- 14.4.3 Example: Iron
- 14.4.4 Ferroelectricity
- 14.4.5 Pyroelectricity
- 14.4.6 Antiferroelectricity
- 14.4.7 Piezoelectricity
- 14.4.8 Polarization
- 14.5 Landau Theory of Phase Transitions
- 14.5.1 Second Order Phase Transitions
- 14.5.2 First Order Phase Transitions
- 14.1 Excitons
- 15 Summary: Silicon
- 16 Superconductivity
- 16.1 Introduction
- 16.2 Experimental Observations
- 16.2.1 Fundamentals
- 16.2.2 Meissner - OchsenfeldEffect
- 16.2.3 Heat Capacity
- 16.2.4 Isotope Effect
- 16.3 Phenomenological Description
- 16.3.1 Thermodynamic Considerations
- 16.3.2 TheLondonEquations
- 16.3.3 Ginzburg - LandauEquations
- 16.4 Microscopic Theories
- 16.4.1 BCS Theory of Superconductivity
- 16.4.2 Some BCS Results
- 16.4.3 CooperPairs
- 16.4.4 Flux Quantization
- 16.4.5 Single Particle Tunneling
- 16.4.6 TheJosephsonEffect
- 16.4.7 SQUID
axel boer
(Axel Boer)
#1