Advanced Solid State Physics

(Axel Boer) #1

Figure 58: Particle moving on a circle in cartesian coordinates and in k-space. Something moving
on a circle at a located position, moves around the origin in k-space, because the x- and
y-velocity keep going to zero and that’s the path taken in k-space.


So, one has to construct a Lagrangian, which is a function of velocity. Normally one guesses the
Lagrangian and looks if the right force comes out, but luckily in this case the Lagrangian was guessed
before to be


L=

1

2

mv^2 −qV(r,t) +qv·A(r,t). (67)

So by putting this Lagrangian into the Euler-Lagrange equations (eqn. (68)), we obtain the Lorentz
force law^6 :


d
dt

(∂L

∂x ̇i

)

∂L

∂xi

= 0 (68)

d
dt

(
∂L
∂vx

)

∂L

∂x

= 0

d
dt

(
∂L
∂vx

)
=

d
dt
(mvx+qAx) =m

dvx
dt
+q

dAx
dt

=m
dvx
dt

+q

(
dx
dt

∂Ax
∂x

+

dy
dt

∂Ax
∂y

+

dz
dt

∂Ax
∂z

+

∂Ax
∂t

)

=m
dvx
dt

+q

(
vx
∂Ax
∂x

+vy
∂Ax
∂y

+vz
∂Ax
∂z

+

∂Ax
∂t

)

∂L

∂x

=−q

∂V

∂x

+q

(
vx
∂Ax
∂x

+vy
∂Ay
∂x

+vz
∂Az
∂x

)

m
dvx
dt
=−q

(
∂V
∂x

+

∂Ax
∂t

)

︸ ︷︷ ︸
x component of electric field

+q

(
vy

(
∂Ay
∂x


∂Ax
∂y

)
+vz

(
∂Az
∂x


∂Ax
∂z

))

︸ ︷︷ ︸
x component ofvxB

With the calculation above in all three dimensions,E=−∇V −∂dtA andB=∇×A, eqn. (66) is
obtained, which proves eqn. (67) to be the right Lagrangian to solve this problem.


(^6) Der Beweis fuer die Richtigkeit der Lagrangefunktion ist nicht pruefungsrelevant, wird aber der Vollstaendigkeit halber
wiedergegeben. Man sollte aber wissen, dass genau diese Lagrangefunktion das Problem beschreibt.

Free download pdf