Example 7-5. Determine how to calculate the torsion τ of a space curve.
Solution The derivative
dr
ds =ˆet is a unit tangent vector to the space curve and
d^2 r
ds^2=dˆet
ds=κˆen. Calculating the third derivative of the position vector with respect
to the arc length parameter gives
d^3 r
ds^3=kdˆen
ds+dκ
dsˆen=κ(τˆeb−κˆet) + dκ
dsˆen=κτ ˆeb−κ^2 ˆet+dκ
dsˆenUse the properties of the triple scalar product with
dr
ds ·(
d^2 r
ds^2 ×d^3 r
ds^3)
=eˆt·(
κˆen×[κτ ˆeb−κ^2 ˆet+dκds ˆen])
(7 .23)together with the cross products
ˆen׈eb=ˆet, ˆen׈et=−ˆeb, ˆen׈en= 0and show equation (7.23) simplifies to
dr
ds·(
d^2 r
ds^2×d^3 r
ds^3)
=eˆt·[k^2 τˆet+κ^3 ˆeb] = κ^2 τUsing the result from the previous example that κ^2 = [x′′(s)]^2 + [y′′(s)]^2 + [z′′(s)]^2 one
can write
τ=dr
ds ·(
d^2 r
ds^2 ×d^3 r
ds^3)[x′′(s)]^2 + [y′′(s)]^2 + [z′′(s)]^2which can also be expressed as the determinant
τ=^1
[x′′(s)]^2 + [y′′(s)]^2 + [z′′(s)]^2∣∣
∣∣
∣∣x′(s) y′(s) z′(s)
x′′(s) y′′(s) z′′(s)
x′′′(s) y′′′(s) z′′′(s)∣∣
∣∣
∣∣Example 7-6. Velocity and Acceleration.
A physical example illustrating the use of the unit tangent and normal vectors
is found in determining the normal and tangential components of the velocity and
acceleration vectors as a particle moves along a curve. If r denotes the position
vector of the particle, v its velocity, and a its acceleration, then
v =dr
dt, a =dv
dt=d(^2) r
dt^2
, v^2 =v ·v =dr
dt
·dr
dt
(
ds
dt
) 2
, (7 .24)
where sis the arc length along the curve. Using chain rule differentiation gives
v =dr
dt =dr
dsds
dt =ˆetv.