Begin2.DVI

(Ben Green) #1

Example 7-5. Determine how to calculate the torsion τ of a space curve.


Solution The derivative

dr
ds =

ˆet is a unit tangent vector to the space curve and

d^2 r
ds^2

=dˆet
ds

=κˆen. Calculating the third derivative of the position vector with respect

to the arc length parameter gives

d^3 r
ds^3

=kd

ˆen
ds

+dκ
ds

ˆen=κ(τˆeb−κˆet) + dκ
ds

ˆen=κτ ˆeb−κ^2 ˆet+dκ
ds

ˆen

Use the properties of the triple scalar product with

dr
ds ·

(
d^2 r
ds^2 ×

d^3 r
ds^3

)
=eˆt·

(
κˆen×[κτ ˆeb−κ^2 ˆet+dκds ˆen]

)
(7 .23)

together with the cross products

ˆen׈eb=ˆet, ˆen׈et=−ˆeb, ˆen׈en= 0

and show equation (7.23) simplifies to

dr
ds

·

(
d^2 r
ds^2

×

d^3 r
ds^3

)
=eˆt·[k^2 τˆet+κ^3 ˆeb] = κ^2 τ

Using the result from the previous example that κ^2 = [x′′(s)]^2 + [y′′(s)]^2 + [z′′(s)]^2 one

can write

τ=

dr
ds ·

(
d^2 r
ds^2 ×

d^3 r
ds^3

)

[x′′(s)]^2 + [y′′(s)]^2 + [z′′(s)]^2

which can also be expressed as the determinant

τ=^1
[x′′(s)]^2 + [y′′(s)]^2 + [z′′(s)]^2

∣∣
∣∣
∣∣

x′(s) y′(s) z′(s)
x′′(s) y′′(s) z′′(s)
x′′′(s) y′′′(s) z′′′(s)

∣∣
∣∣
∣∣

Example 7-6. Velocity and Acceleration.


A physical example illustrating the use of the unit tangent and normal vectors

is found in determining the normal and tangential components of the velocity and

acceleration vectors as a particle moves along a curve. If r denotes the position

vector of the particle, v its velocity, and a its acceleration, then

v =dr
dt

, a =dv
dt

=d

(^2) r
dt^2
, v^2 =v ·v =dr
dt
·dr
dt


(
ds
dt
) 2
, (7 .24)


where sis the arc length along the curve. Using chain rule differentiation gives

v =

dr
dt =

dr
ds

ds
dt =

ˆetv.
Free download pdf