Begin2.DVI

(Ben Green) #1
of the cross product of the sides of a parallelogram gives the area of the parallelogram

and consequently one can express the element of surface area as

dS =|∂r
∂u

du ×∂r
∂v

dv |=|∂r
∂u

×∂r
∂v

|dudv (7 .53)

Using the vector identity

(A×B)·(C×D) = (A·C)(B·D)−(A·D)(B·C)

with A=C =

∂r

∂u and

B =D =∂r

( ∂v one finds

∂r
∂u ×

∂r
∂v

)
·

(
∂r
∂u ×

∂r
∂v

)
=

(
∂r
∂u ·

∂r
∂u

)(
∂r
∂v ·

∂r
∂v

)

(
∂r
∂u ·

∂r
∂v

)
·

(
∂r
∂u ·

∂r
∂v

)

Define the quantities

E=∂r
∂u

·∂r
∂u

=

(
∂x
∂u

) 2
+

(
∂y
∂u

) 2
+

(
∂z
∂u

) 2

F=

∂r
∂u ·

∂r
∂v =

∂x
∂u

∂x
∂v +

∂y
∂u

∂y
∂v +

∂z
∂u

∂z
∂v

G=

∂r
∂v ·

∂r
∂v =

(
∂x
∂v

) 2
+

(
∂y
∂v

) 2
+

(
∂z
∂v

) 2

(7 .54)

then one can write

dS =|

∂r
∂u ×

∂r
∂v |dudv =


EG −F^2 dudv (7 .55)

Alternatively one can write

∂r
∂u ×

∂r
∂v =

∣∣
∣∣
∣∣

ˆe 1 ˆe 2 ˆe 3
∂x
∂u

∂y
∂u

∂z
∂x ∂u
∂v

∂y
∂v

∂z
∂v

∣∣
∣∣
∣∣

=

(
∂y
∂u

∂z
∂v

−∂y
∂v

∂z
∂u

)
ˆe 1 −

(
∂x
∂u

∂z
∂v

−∂z
∂u

∂x
∂v

)
ˆe 2 +

(
∂x
∂u

∂y
∂v

−∂x
∂v

∂y
∂u

)
ˆe 3

and the magnitude of this cross product is given by

∣∣
∣∣∂r
∂u

×∂r
∂v

∣∣
∣∣=

√(
∂y
∂u

∂z
∂v

−∂y
∂v

∂z
∂u

) 2
+

(
−∂x
∂u

∂z
∂v

+∂z
∂u

∂x
∂v

) 2
+

(
∂x
∂u

∂y
∂v

−∂x
∂v

∂y
∂u

) 2
(7 .56)

Expanding the equation (7.56) one finds that the element of surface can be repre-

sented by the equation (7.55). To find the area of the surface one need only evaluate

the double integral

Surface Area =

∫β

α

∫δ

γ


EG −F^2 dv du (7 .57)
Free download pdf