Begin2.DVI

(Ben Green) #1

Example 7-11. Find the divergence of the vector field given by


v =xyz eˆ 1 +yz^2 ˆe 2 +zxy^2 ˆe 3

Solution By definition

div v =∇·v =

(

∂x ˆe^1 +


∂y eˆ^2 +


∂z ˆe^3

)
·

(
xyz ˆe 1 +yz^2 ˆe 2 +zxy^2 ˆe 3

)

div v =∇·v =yz +z^2 +xy^2

Example 7-12. Find the curl of the vector field v =xyz ˆe 1 +yz^2 eˆ 2 +zxy^2 ˆe 3


Solution By definition

curlv =∇× v =

∣∣
∣∣
∣∣

ˆe 1 ˆe 2 eˆ 3

∂x


∂y


∂z
xyz yz^2 zxy^2

∣∣
∣∣
∣∣

=ˆe 1

∣∣
∣∣


∂y


∂z
yz^2 zxy^2

∣∣
∣∣−ˆe 2

∣∣
∣∣


∂x


∂z
xyz zxy^2

∣∣
∣∣+ˆe 3

∣∣
∣∣


∂x


∂y
xyz yz^2

∣∣
∣∣

curlv =∇× v = (2xyz − 2 yz)ˆe 1 −(zy^2 −xy )ˆe 2 −xz eˆ 3

Properties of the Gradient, Divergence and Curl


Let u=u(x, y, z)and v=v(x, y, z )denote scalar functions which are continuous

and differentiable everywhere and let A=A(x, y, z)and B =B(x, y, z )denote vector

functions which are continuous and differentiable everywhere. One can then verify

that the del or nabla operator has the following properties.

(i) grad (u+v) = grad u+ grad vor ∇(u+v) = ∇u+∇v

(ii) grad (uv ) = ugrad v+vgrad uor ∇(uv ) = u∇v+v∇u

(iii) grad f(u) = f′(u) grad uor ∇(f(u)) = f′(u)∇u

(iv) |grad u|=|∇ u|=

√(
∂u
∂x

) 2
+

(
∂u
∂y

) 2
+

(
∂u
∂z

) 2

(v) If a vector field is irrotational curlF = 0 , then it is derivable from a scalar

function by taking the gradient, then one can write F =F(x, y, z ) = grad u(x, y, z),

or F =∇u. The vector field F is called a conservative vector field. The function

ufrom which the vector field is derivable is called the scalar potential.

(vi) ∇·(A+B) = ∇·A+∇·B or div (A+B) = div A+ div B

(vii) ∇× (A+B) = ∇× A+∇× B or curl (A+B) = curl A+ curlB

(viii) ∇(uA) = (∇u)·A+u(∇·A)

(ix) ∇× (uA) = (∇u)×A+u(∇× A)

(x) ∇·(A×B) = B·(∇× A)−A·(∇× B)

(xi) ∇× (A×B) = (B·∇ )A−B(∇·A)−(A·∇ )B+A(∇·B)
Free download pdf