Begin2.DVI

(Ben Green) #1

Example 7-14. Let r =xˆe 1 +yˆe 2 +zˆe 3 denote the position vector to a general


point (x, y, z ). Show that

grad(^1
r

) = grad^1
|r |

=−^1
r^2

grad (r) = −^1
r^3

r =−^1
r^2

ˆer

where ˆeris a unit vector in the direction of r.

Solution Let r=|r |=


x^2 +y^2 +z^2 so that^1 r= (x^2 +y^2 +z^2 )−^1 /^2. By definition

grad(

1
r) =


∂x

(
1
r

)
ˆe 1 + ∂
∂y

(
1
r

)
eˆ 2 + ∂
∂z

(
1
r

)
ˆe 3

where


∂x

(
1
r

)
=−^1
2

(x^2 +y^2 +z^2 )−^3 /^2 (2 x) = −x
r^3

∂y

(
1
r

)
=−^1
2

(x^2 +y^2 +z^2 )−^3 /^2 (2 y) = −y
r^3

∂z

(
1
r

)
=−

1
2 (x

(^2) +y (^2) +z (^2) )− 3 / (^2) (2 z) = −z
r^3


Substituting for the partial derivatives in the gradient gives

grad(

1
r) = grad

1
|r |=−

r
r^3 =−

1
r^2

(
r
r

)
==

1
r^2 grad r=−

1
r^2

ˆer

Example 7-15. Let r =xˆe 1 +yˆe 2 +zˆe 3 denote the position vector to a general


point (x, y, z )and let r=|r |. Find grad(rn).

Solution By definition

grad(rn) = ∇(rn) = ∂r

n
∂x

ˆe 1 +∂r

n
∂y

ˆe 2 +∂r

n
∂z

ˆe 3

where

∂r n
∂x =nr

n− 1 ∂r
∂x =nr

n− 1 x
r=r

n− (^2) x
∂r n
∂y
=nr n−^1 ∂r
∂y
=nrn−^1 y
r
=nr n−^2 y
∂r n
∂z =r
n− 1 ∂r
∂z =nr
n− 1 z
r=nr
n− (^2) z


so that

grad(rn) = nr n−^2 r =nrn−^1 ˆer
Free download pdf