Begin2.DVI

(Ben Green) #1

Example 7-18. Show that ∇× (∇× A) = ∇(∇·A)−∇^2 A


Solution Calculate ∇× A using determinants to obtain

∇× A=

∣∣
∣∣
∣∣

ˆe 1 ˆe 2 ˆe 3

∂x


∂y


∂z
A 1 A 2 A 3

∣∣
∣∣
∣∣

=

(
∂A 3
∂y −

∂A 2
∂z

)
ˆe 1 −

(
∂A 3
∂x −

∂A 1
∂z

)
ˆe 2 +

(
∂A 2
∂x −

∂A 1
∂y

)
eˆ 3

One can then calculate the curl of the curl as

∇× (∇× A) =

∣∣
∣∣
∣∣

ˆe 1 eˆ 2 eˆ 3

∂x


∂y


( ∂z
∂A 3
∂y −

∂A 2
∂z

) (
∂A 1
∂z −

∂A 3
∂x

) (∂A 2
∂x −

∂A 1
∂y

)

∣∣
∣∣
∣∣

(7 .66)

The eˆ 1 component of ∇× (∇× A)is

ˆe 1

[

∂y

(
∂A 2
∂x −

∂A 1
∂y

)


∂z

(
∂A 1
∂z −

∂A 3
∂x

)]
=ˆe 1

[
∂^2 A 2
∂x ∂y −

∂^2 A 1
∂y^2 −

∂^2 A 1
∂z^2 +

∂^2 A 3
∂x ∂z

]

By adding and subtracting the term

∂^2 A 1
∂x^2

to the above result one finds the ˆe 1

component can be expressed in the form

ˆe 1

{[
−∂

(^2) A 1
∂x^2
−∂
(^2) A 1
∂y^2
−∂
(^2) A 1
∂z^2
]




  • ∂x
    (
    ∂A 1
    ∂x
    +∂A^2
    ∂y
    +∂A^3
    ∂z
    )}
    (7 .67)


In a similar fashion it can be verified that the ˆe 2 component of ∇× (∇× A)is

ˆe 2

{[
−∂

(^2) A 2
∂x^2 −
∂^2 A 2
∂y^2 −
∂^2 A 2
∂z^2
]
+∂y∂
(
∂A 1
∂x +
∂A 2
∂y +
∂A 3
∂z
)}
(7 .68)


and the ˆe 3 component of ∇× (∇× A)is

ˆe 3

{[

∂^2 A 3
∂x^2 −

∂^2 A 3
∂y^2 −

∂^2 A 3
∂z^2

]
+


∂z

(
∂A 1
∂x +

∂A 2
∂y +

∂A 3
∂z

)}
(7 .69)

Adding the results from the equations (7.67), (7.68), (7.69) one obtains the result

∇× (∇× A) = ∇(∇·A)−∇^2 A (7 .70)

Directional Derivatives


Let r =r (s) denote an arbitrary space curve which passes through the point

P(x, y, z)of the region R, where the scalar function φ=φ(x, y, z)exists and has all first-

order partial derivatives which are continuous. Here the space curve is expressed
Free download pdf