Begin2.DVI

(Ben Green) #1
(iii) On face BFGC the unit normal to the surface is the vector n =ˆe 2 and yhas the

value 1 everywhere so that

∫∫

R

F·dS=

∫ 1

0

∫ 1

0

F·n dS =

∫ 1

0

∫ 1

0

(x−z)dxdz =

∫ 1

0

1
2 dz −

∫ 1

0

z dz = 0

(iv) On face AE0D the unit normal to the surface is the vector n =−ˆe 2 and yhas

the value 0 everywhere so that

∫∫

R

F·dS=

∫ 1

0

∫ 1

0

F·n dS =

∫ 1

0

∫ 1

0

z dzdx =

∫ 1

0

z dz =

1
2

(v) On face ABFE the unit normal to the surface is the vector n =ˆe 3 and zhas the

value 1 everywhere so that

∫∫

R

F·dS=

∫ 1

0

∫ 1

0

F·n dS =

∫ 1

0

∫ 1

0

(x+y)dxdy =

∫ 1

0

1
2

dy +

∫ 1

0

y dy = 1

(vi) On face DCG0 the unit normal to the surface is the vector n =−ˆe 3 and zhas

the value 0 everywhere so that

∫∫

R

F·dS=

∫ 1

0

∫ 1

0

F·n dS =

∫ 1

0

∫ 1

0

−(x+y)dxdy =− 1

A summation of the surface integrals over each face gives

∫∫

R

F·dS=^3
2

−^1
2

+ 0 +^1
2

+ 1 −1 =^3
2

.

Example 7-30. Evaluate the surface integral


∫∫

R

f(x, y, z )dS, where Sis the

surface of the plane

G(x, y, z ) = 2x+ 2y+z−1 = 0

which lies in the first octant and f=f(x, y, z)is the scalar field given by f=xyz.

Solution The given surface is sketched in figure 7-22. The unit normal at any point

on the surface is

eˆn=

grad G
|grad G|=

2
3 ˆe^1 +

2
3 ˆe^2 +

1
3 ˆe^3.
Free download pdf