Begin2.DVI

(Ben Green) #1
where

E=∂r
∂u

·∂r
∂u

=

(
∂x
∂u

) 2
+

(
∂y
∂u

) 2
+

(
∂z
∂u

) 2

F=∂r
∂u

·∂r
∂v

=∂x
∂u

∂x
∂v

+∂y
∂u

∂y
∂v

+∂z
∂u

∂z
∂v
G=∂r
∂v

·∂r
∂v

=

(
∂x
∂v

) 2
+

(
∂y
∂v

) 2
+

(
∂z
∂v

) 2
.

Then the surface area can be represented in the form

S=


Ruv


EG −F^2 du dv, (7 .104)

where the integration is over those parameter values uand vwhich define the surface.

The various surface integrals can also be represented in terms of the parameters

uand v. These integrals have the forms

∫∫

R

f(x, y, z)dS=

∫∫

Ruv

f(x(u, v ), y (u, v ), z(u, v ))


EG −F^2 ˆendu dv

and

∫∫

R

F(x, y, z)·dS=

∫∫

Ruv

F(x(u, v ), y (u, v ), z (u, v )) ·eˆn


EG −F^2 du dv.

(7 .105)

Example 7-33. A cylinder of radius a and height h has the parametric


representation x =x(θ, z ) = acos θ, y =y(θ, z ) = asin θ, z =z(θ, z ) = z, where the

parameters θand z, are illustrated in figure 7-24, and satisfy 0 ≤θ≤ 2 πand 0 ≤z≤h.

Figure 7-24.

Surface area in cylindrical coordinates.

A point on the surface of the cylinder can be represented by the position vector

r =r (θ, z) = acos θˆe 1 +asin θˆe 2 +zˆe 3.
Free download pdf