Begin2.DVI

(Ben Green) #1
7-8. If r =r (t)denotes a space curve, show that the torsion can be calculate from

the relation

V = r

′·(r ′′ ×r ′′′)
(r ′·r ′)(r ′′ ·r ′′)−(r ′·r ′′)^2

where prime ′=dtd always denotes differentiation with respect to the argument of

the function. Hint: Show dr

ds

·

(
d^2 r
ds^2

×d

(^3) r
ds^3
)
=κ^2 V
7-9.


(a) Find the curvature of the straight line r =r (t) = ˆe 1 +ˆe 2 +ˆe 3 + (7 ˆe 1 + 2 ˆe 2 − 3 ˆe 3 )t

(b) Find the torsion of the plane curve r =r (x) = xˆe 1 +x^2 ˆe 2

7-10. For r =r (t)the position vector of a curve, show that

|r ′×r ′′|=κ|r ′|^3 , where ′= d

dt

7-11. Find the directional derivative of φin the specified direction, at the given

point.

(i) φ=y^2 x^2 z+x^3 z, P (1, 1 ,1), 3 ˆe 1 − 2 ˆe 2 + 6 ˆe 3

(ii) φ=xyz, P (2, 1 ,−1) 5 ˆe 1 − 4 ˆe 2 + 20 ˆe 3

(iii) φ=xy^2 +yz^3 , P (1,− 1 ,0), 2 ˆe 1 − 5 ˆe 2 − 14 ˆe 3

(iv) φ=x^2 y^2 +yz^3 x, P (1, 1 ,1), ˆe 1 + 2 ˆe 2 + 2 ˆe 3

7-12.


(i) Let φ=x^2 ydefine a two-dimensional scalar field. Find the directional derivative

of φat the point (2 ,


3) in the direction eˆα= cos αˆe 1 + sin αˆe 2

(ii) In what direction αis the directional derivative a maximum?

(iii) In what direction αis the directional derivative a minimum?

7-13. Show that d

dt

[
r ·

(
dr
dt

×d

(^2) r
dt^2
)]
=r ·
(
dr
dt
×d
(^3) r
dt^3
)


7-14. Prove that A×(B×C) + B×(C×A) + C×(A×B) =  0

7-15. Discuss the critical points of the function

z=z(x, y ) =^1
3

x^3 +^1
3

y^3 +^1
2

x^2 −^3
2

y^2 − 2 x+ 2y

7-16. Show that the Frenet-Serret formulas may be expressed in the form

dˆet
ds

=ω׈et, dˆeb
ds

=ω׈eb, dˆen
ds

=ω׈en

by finding the vector ω. Hint: Let ω=αeˆt+βˆen+γˆeband examine the above cross

products to solve for α, β, and γ.
Free download pdf