Begin2.DVI

(Ben Green) #1
Treating the vector function F as a function of , one can expand F in a Taylor’s

series about = 0,to obtain

F=F(x 0 , y 0 , z 0 ) + dF
d +

^2
2!

d^2 F
d^2 +

^3
3!

d^3 F
d^3 +··· (8 .7)

where all the derivatives are to be evaluated at = 0 .Substituting the expressions

for the unit normal and the Taylor’s series into the flux integral produces

φ=^2 μ 0 +^3 μ 1 +^4 μ 2 +···,

where

μ 0 =

∫π

0

∫ 2 π

0

F(x 0 , y 0 , z 0 )·ˆensin θ dφ dθ

μ 1 =

∫π

0

∫ 2 π

0

dF
d =0 ·ˆensin θ dφ dθ

μ 2 =

∫π

0

∫ 2 π

0

d^2 F
d^2 =0

·ˆensin θ dφ dθ,

plus higher order terms in . The vector F(x 0 , y 0 , z 0 )is a constant and an evaluation

of the integral defining μ 0 produces μ 0 = 0 .To calculate the second integral defining

μ 1 observe that the chain rule for functions of more than one variable produces the

result

dF
d

=∂
F
∂x

∂x
∂

+∂
F
∂y

∂y
∂

+∂
F
∂z

∂z
∂
dF
d =

∂F
∂x sin θcos φ+

∂F
∂y sin θsin φ+

∂F
∂z cos θ

This result can be expressed in the component form

dF
d =0 =

(
∂F 1
∂x sin θcos φ+

∂F 1
∂y sin θsin φ+

∂F 1
∂z cos θ

)
ˆe 1

+

(
∂F 2
∂x

sin θcos φ+∂F^2
∂y

sin θsin φ+∂F^2
∂z

cos θ

)
eˆ 2

+

(
∂F 3
∂x sin θcos φ+

∂F 3
∂y sin θsin φ+

∂F 3
∂z cos θ

)
eˆ 3
=0

where all the derivatives are to be evaluated at = 0.Evaluating the integrals defining

μ 1 ,produces

μ 1 =

4
3 π

(
∂F 1
∂x +

∂F 2
∂y +

∂F 3
∂z

)

=0

The flux integral then has the form

φ=

4
3 π

3

(
∂F 1
∂x +

∂F 2
∂y +

∂F 3
∂z

)
+^4 μ 2 +^5 μ 3 +···
Free download pdf