Let M(u, v ) =
1
2
(
x
∂y
∂u
−y
∂x
∂u
)
and N(u, v ) =
1
2
(
x
∂y
∂v
−y
∂x
∂v
)
and apply Green’s
theorem to the integral (8.30). Using the results
∂M
∂v =
1
2
[
x∂
(^2) y
∂u∂v +
∂x
∂v
∂y
∂u −y
∂^2 x
∂u∂v −
∂y
∂v
∂x
∂u
]
and ∂N∂u =^12
[
x ∂
(^2) y
∂v∂u +
∂x
∂u
∂y
∂v −y
∂^2 x
∂v∂u −
∂y
∂u
∂x
∂v
]
one finds (
∂N
∂u −
∂M
∂v
)
=
∣∣
∣∣
∂x
∂u
∂y
∂x ∂u
∂v
∂y
∂v
∣∣
∣∣=∂x
∂u
∂y
∂v −
∂x
∂v
∂y
∂u =J
(
x, y
u, v
)
, (8 .31)
where the determinant J is called the Jacobian determinant of the transformation
from (x, y )to (u, v ).The area integral can then be expressed in the form
A=
∫∫
R
dx dy =
∫∫
u,v
J
(
x, y
u, v
)
du dv, (8 .32)
where the limits of integration are over that range of the variables u, v which define
the region R.
Example 8-8. In changing from rectangular coordinates (x, y )to polar coordi-
nates (r, θ)the transformation equations are
x=x(r, θ) = rcos θ y =y(r, θ) = rsin θ,
and the Jacobian of this transformation is
J
(
x, y
u, v
)
=
∣∣
∣∣
∂x
∂u
∂y
∂x ∂u
∂v
∂y
∂v
∣∣
∣∣=
∣∣
∣∣ cos θ sin θ
−rsin θ r cos θ
∣∣
∣∣=r
and the area can be expressed as
∫∫
Rxy
dx dy =
∫∫
Rrθ
r dr dθ (8 .33)
which is the familiar area integral from polar coordinates.
In general, an integral of the form
∫∫
Rxy
f(x, y )dx dy under a change of variables
x=x(u, v ), y =y(u, v )becomes
∫∫
Ruv
f(x(u, v ), y (u, v )) J
(
x, y
u, v
)
du dv, where the integrand
is expressed in terms of uand vand the element of area dx dy is replaced by the new
element of area J
(x,y
u,v
)
du dv.