Begin2.DVI

(Ben Green) #1
Let M(u, v ) =

1
2

(
x

∂y
∂u

−y

∂x
∂u

)

and N(u, v ) =

1
2

(
x

∂y
∂v

−y

∂x
∂v

)

and apply Green’s

theorem to the integral (8.30). Using the results

∂M
∂v =

1
2

[
x∂

(^2) y
∂u∂v +
∂x
∂v
∂y
∂u −y
∂^2 x
∂u∂v −
∂y
∂v
∂x
∂u
]


and ∂N∂u =^12

[
x ∂

(^2) y
∂v∂u +
∂x
∂u
∂y
∂v −y
∂^2 x
∂v∂u −
∂y
∂u
∂x
∂v
]


one finds (

∂N
∂u −

∂M
∂v

)
=

∣∣
∣∣

∂x
∂u

∂y
∂x ∂u
∂v

∂y
∂v

∣∣
∣∣=∂x
∂u

∂y
∂v −

∂x
∂v

∂y
∂u =J

(
x, y
u, v

)
, (8 .31)

where the determinant J is called the Jacobian determinant of the transformation

from (x, y )to (u, v ).The area integral can then be expressed in the form

A=

∫∫

R

dx dy =

∫∫

u,v

J

(
x, y
u, v

)
du dv, (8 .32)

where the limits of integration are over that range of the variables u, v which define

the region R.

Example 8-8. In changing from rectangular coordinates (x, y )to polar coordi-


nates (r, θ)the transformation equations are

x=x(r, θ) = rcos θ y =y(r, θ) = rsin θ,

and the Jacobian of this transformation is

J

(
x, y
u, v

)
=

∣∣
∣∣

∂x
∂u

∂y
∂x ∂u
∂v

∂y
∂v

∣∣
∣∣=

∣∣
∣∣ cos θ sin θ
−rsin θ r cos θ

∣∣
∣∣=r

and the area can be expressed as

∫∫

Rxy

dx dy =

∫∫

Rrθ

r dr dθ (8 .33)

which is the familiar area integral from polar coordinates.

In general, an integral of the form

∫∫

Rxy

f(x, y )dx dy under a change of variables

x=x(u, v ), y =y(u, v )becomes

∫∫

Ruv

f(x(u, v ), y (u, v )) J

(
x, y
u, v

)

du dv, where the integrand

is expressed in terms of uand vand the element of area dx dy is replaced by the new

element of area J

(x,y
u,v

)
du dv.
Free download pdf